http://www.lydsy.com/JudgeOnline/problem.php?id=2194

卷积。。。

卷积并不高深,其实卷积就是两个多项式相乘的系数,但是得满足一点条件,就是f[n]=a[i]*b[n-i],就是下标和固定。。。然后这道题下标和不固定,但是我们把b反过来,就是一个卷积了。每次和是固定的

但是输出的时候得输出从n-2n,因为c[n+k]=a[i]*b[n+k-i],n<=n+k<=2*n

#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
const int N = ;
complex<double> a[N], b[N];
int n, m, l;
int r[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i <= n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> w(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j <= n; j += p)
{
complex<double> t(, );
for(int k = ; k < i; ++k, t = t * w)
{
complex<double> x = a[j + k], y = t * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d", &n); --n;
for(int i = ; i <= n; ++i)
{
int x, y; scanf("%d%d", &x, &y); a[i] = x; b[n - i] = y;
}
m = * n; for(n = ; n <= m; n <<= ) ++l;
for(int i = ; i <= n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (l - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = m / ; i <= m; ++i) printf("%d\n", (int)(a[i].real() / n + 0.5));
return ;
}

bzoj2194的更多相关文章

  1. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  2. 【BZOJ2194】快速傅立叶之二

    [BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...

  3. [bzoj2194]快速傅立叶之二_FFT

    快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...

  4. bzoj2194: 快速傅立叶之二

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  5. bzoj2194 快速傅里叶之二

    题意:对于k = 0 ... n求 解: 首先把i变成从0开始 我们发现a和b的次数(下标)是成正比例的,这不可,于是反转就行了. 反转b的话,会发现次数和是n + k,这不可. 反转a就很吼了. 这 ...

  6. 2018.11.18 bzoj2194: 快速傅立叶之二(fft)

    传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...

  7. 【bzoj2194】快速傅立叶之二 FFT

    题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...

  8. bzoj千题计划256:bzoj2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...

  9. BZOJ2194: 快速傅立叶之二(NTT,卷积)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1776  Solved: 1055[Submit][Status][Discuss] Descript ...

  10. BZOJ2194:快速傅立叶之二(FFT)

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

随机推荐

  1. springcloud中feign接值问题

    很多时候使用feign都接收不到传过来的数据,一般情况如下! 如果是基本数据类型的话,使用@RequestParam @RequestMapping(value = "/selectDeta ...

  2. Address already in use: JVM_Bind:8080错误的解决办法

    解决办法:先到命令行查找8080端口号被那个占用,输入后面的命令:netstat -ano 查到 然后到任务管理器把PID为20904的进程给结束掉,就OK了 -------------------- ...

  3. naca0012

    naca0012 naca0012 Table of Contents 1. NACA0012 lift and drag from 0-180 1.1. Data– Cl Cd vs. aoa 2. ...

  4. 【12】AngularJS 事件

    AngularJS 事件 AngularJS 有自己的 HTML 事件指令. ng-click 指令 ng-click 指令定义了 AngularJS 点击事件. <div ng-app=&qu ...

  5. Leetcode 90.子集

    子集 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: [1,2,2] 输出: [ [2], [1], [1,2,2], ...

  6. poj 3925 枚举+prime

    /* 因为15很小可以暴力枚举然后用最小生成树的prim来计算 */ #include<stdio.h> #include<string.h> #include<math ...

  7. python——正则表达式的理解

    概念:又称规则表达式,常用来检索.替换符合某个规则的文本. 理解:特殊字符--------->规则---------->过滤字符串 目的:1.匹配给定的字符串,2.从字符串中过滤出我们需要 ...

  8. I - Navigation Nightmare 并查集

    Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1 ...

  9. HDU1914(稳定婚姻)

    http://acm.hdu.edu.cn/showproblem.php?pid=1914 思路:Gale-Shapley算法.算法过程是男士不停地求婚,女士不停地拒绝.在每一轮中,每个尚未订婚的男 ...

  10. 未来 Web 设计的 7 大趋势

    1.手势代替点击 还记得曾经是怎样滚动网页的吗?将鼠标移到屏幕的右边缘,然后拖动古代称为"滚动栏"的玩意儿: 略微专业点的可能会使用鼠标滚轮,光标键或触控板,这已经率先于大多数的用 ...