luogu 4720 【模板】扩展卢卡斯
题目大意:
求$C_n^m \mod p$,p不一定为质数
思路:
首先可以将$p$分解为$p1^{a1}*p2^{a2}*...*pk^{ak}$,对于这些部分可以使用$CRT$合并
对于每个$p_i^{k_i}$,阶乘是存在循环的例如$19!$与模数$9$
$1*2*4*5*7*8$与$10*11*13*14*16*17$对答案的贡献一样,因此可以快速幂
对于剩下的部分因为很少可以暴力
对于求阶乘的部分 用这种方法求出循环节和剩余部分然后继续递归即可
求$C$的时候$C_n^m \mod p^k= \frac{n! / p^a}{m! / p^b \times (n-m)! / p^c} * p^{a-b-c} \mod p^k$
然后就是$CRT$套上述这一堆东西
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 2139062143
#define MAXN 200100
#define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
#define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
#define ren for(register int i=fst[x];i;i=nxt[i])
#define pb(i,x) vec[i].push_back(x)
#define pls(a,b) (a+b)%MOD
#define mns(a,b) (a-b+MOD)%MOD
#define mul(a,b) (1LL*(a)*(b))%MOD
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
ll T,n,m,MOD;
ll q_pow(ll a,ll t,ll p,ll res=)
{
for(a%=p;t;t>>=,(a*=a)%=p)
if(t&) (res*=a)%=p;return res;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=,y=;return a;}
ll d=exgcd(b,a%b,y,x);y-=(a/b)*x;return d;
}
ll pw(ll n,ll p,ll pk)
{
if(!n) return ;ll res=;
rep(i,,pk) if(i%p) (res*=i)%=pk;
res=q_pow(res,n/pk,pk);
rep(i,,n%pk) if(i%p) (res*=i)%=pk;
return (res*pw(n/p,p,pk))%pk;
}
ll inv(ll n,ll p) {ll x,y;exgcd(n,p,x,y);return (x+p)%p;}
ll C(ll n,ll m,ll p,ll pk)
{
ll pn=pw(n,p,pk),pm=pw(m,p,pk),pz=pw(n-m,p,pk),sum=;
for(ll i=n;i;i/=p) sum+=i/p;for(ll i=m;i;i/=p) sum-=i/p;
for(ll i=n-m;i;i/=p) sum-=i/p;
pm=inv(pm,pk),pz=inv(pz,pk);
return (((q_pow(p,sum,pk)*pn)%MOD*pm)%MOD*pz)%MOD;
}
void exlucas(ll n,ll m)
{
ll p=MOD,rs=p,k,ans=,x,y;
rep(i,,sqrt(MOD))
{
k=;while(rs%i==) rs/=i,k*=i;
if(k!=) (ans+=(inv(p/k,k)*p/k)%MOD*C(n,m,i,k)+MOD)%=MOD;
}
if(rs!=) (ans+=(inv(p/rs,rs)*p/rs)%MOD*C(n,m,rs,rs)+MOD)%=MOD;
printf("%lld\n",ans);
}
int main()
{
n=read(),m=read(),MOD=read();exlucas(n,m);
}
luogu 4720 【模板】扩展卢卡斯的更多相关文章
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- luogu P5410 模板 扩展 KMP Z函数 模板
LINK:P5410 模板 扩展 KMP Z 函数 画了10min学习了一下. 不算很难 思想就是利用前面的最长匹配来更新后面的东西. 复杂度是线性的 如果不要求线性可能直接上SA更舒服一点? 不管了 ...
- 洛谷 P4720 【模板】扩展 / 卢卡斯 模板题
扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720 卢卡斯定理:https://www.luogu.org/problemnew/show/P3 ...
- 洛谷P4720 【模板】扩展卢卡斯
P4720 [模板]扩展卢卡斯 题目背景 这是一道模板题. 题目描述 求 C(n,m)%P 其中 C 为组合数. 输入输出格式 输入格式: 一行三个整数 n,m,p ,含义由题所述. 输出格式: 一行 ...
- P4720【模板】扩展卢卡斯,P2183 礼物
扩展卢卡斯定理 最近光做模板了 想了解卢卡斯定理的去这里,那题也有我的题解 然而这题和卢卡斯定理并没有太大关系(雾 但是,首先要会的是中国剩余定理和exgcd 卢卡斯定理用于求\(n,m\)大,但模数 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- Luogu P2183 [国家集训队]礼物 扩展卢卡斯+组合数
好吧学长说是板子...学了之后才发现就是板子qwq 题意:求$ C_n^{w_1}*C_{n-w_1}^{w_2}*C_{n-w_1-w_2}^{w_3}*...\space mod \space P ...
- 【luoguP4720】【模板】扩展卢卡斯
快速阶乘与(扩展)卢卡斯定理 \(p\)为质数时 考虑 \(n!~mod~p\) 的性质 当\(n>>p\)时,不妨将\(n!\)中的因子\(p\)提出来 \(n!\) 可以写成 \(a* ...
- LG4720 【模板】扩展卢卡斯定理
扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 ...
- 【知识总结】扩展卢卡斯定理(exLucas)
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...
随机推荐
- Leetcode 283.移动零
移动零 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须在原数组 ...
- [Docker]容器的隔离与限制
1.Docker事实 1)容器技术的兴起源于Pass技术的普及 2)Docker公司发布的Docker项目具有里程碑式的意义 3)Docker项目通过容器镜像解决了应用打包这个根本性难题 4)容器本身 ...
- 1013. Battle Over Cities (25)(DFS遍历)
For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city ...
- squid重定向(python 代码)
#!/usr/bin/python2.7 # coding: utf-8 import sys,os,stat import transport def redirect_url(line,concu ...
- 两行代码搞定UI主流框架
XCNavTab XCNavTab适用于快速搭建NavigationController和TabBarController相结合的框架 https://github.com/xiaocaiabc/XC ...
- 洛谷—— P1714 切蛋糕
https://www.luogu.org/problem/show?pid=1714 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每 ...
- loj6157 A^B Problem (并查集)
题目: https://loj.ac/problem/6157 分析: 这种树上异或,一般是采用分位考虑,但是这题即使分位,也会发现非常不好处理 这里考虑维护一个点到其根的路径的异或值 用并查集去检测 ...
- ArrayList和LinkedList区别(蚂蚁金服面试题)
1. 是否保证线程安全: ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全: 2. 底层数据结构: Arraylist 底层使用的是Object数组:LinkedLis ...
- CDI Services *Decoretions *Intercepters * Scope * EL\(Sp EL) *Eventmodel
1.Decorators装饰器综述 拦截器是一种强大的方法在应用程序捕捉运行方法和解耦.拦截器可以拦截任何java类型的调用. 这使得拦截器适合解决事务管理,安全性,以及日记记录. 本质上说,拦截 ...
- Office EXCEL 复制粘贴 变成 #value,#REF!,#DIV怎么办
这些都是由于相对引用造成的,如下所示,我鼠标点进去之后变成了I10/L10,当数字和文字或空单元格进行加减乘除的运算就会出现这种问题 使用选择性粘贴,只粘贴数值即可.