[ZJOI2007]棋盘制作 【最大同色矩形】
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
3 3
1 0 1
0 1 0
1 0 0
4
6
说明
对于20%的数据,N, M ≤ 80
对于40%的数据,N, M ≤ 400
对于100%的数据,N, M ≤ 2000
题解
最大同色矩形问题
for (int i = 1; i <= N; i++){
h[i][M] = 1;
for (int j = M - 1; j >= 1; j--){
h[i][j] = (A[i][j] == A[i][j + 1] ? h[i][j + 1] + 1 : 1);
}
}
这样,我们就可以很快求出横向边的长度,如何求出纵向边呢?
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1;c = getchar();}
while (c >= 48 &&c <= 57) {out = out * 10 + c - 48;c = getchar();}
return out * flag;
} int N,M,A[maxn][maxn],l[maxn],r[maxn],h[maxn][maxn];
bool vis[maxn]; struct node{
int len,id;
}tmp[maxn]; inline bool operator < (const node& a,const node& b){
return a.len > b.len;
} inline int findl(int u) {return u == l[u] ? u : l[u] = findl(l[u]);}
inline int findr(int u) {return u == r[u] ? u : r[u] = findr(r[u]);} void init(){
N = read();
M = read();
for (int i = 1; i <= N; i++)
for (int j = 1; j <= M; j++)
A[i][j] = read()^((i^j) & 1);
} void solve(){
int ans1 = 0,ans2 = 0,a,b;
for (int i = 1; i <= N; i++){
h[i][M] = 1;
for (int j = M - 1; j >= 1; j--){
h[i][j] = (A[i][j] == A[i][j + 1] ? h[i][j + 1] + 1 : 1);
}
}
for (int j = 1; j <= M; j++){
for (int i = 1; i <= N; i++){
tmp[i].len = h[i][j];
tmp[i].id = i;
vis[i] = false;
l[i] = r[i] = i;
}
sort(tmp + 1,tmp + 1 + N);
for (int i = 1; i <= N; i++){
int k = tmp[i].id;
vis[k] = true;
if (k > 1 && vis[k - 1] && A[k - 1][j] == A[k][j]){
l[k] = k - 1; r[k - 1] = k;
}
if (k < N && vis[k + 1] && A[k + 1][j] == A[k][j]){
r[k] = k + 1; l[k + 1] = k;
}
a = findr(k) - findl(k) + 1;
b = tmp[i].len;
ans1 = max(ans1,min(a,b) * min(a,b));
ans2 = max(ans2,a * b);
}
}
printf("%d\n%d\n",ans1,ans2);
} int main(){
init();
solve();
return 0;
}
[ZJOI2007]棋盘制作 【最大同色矩形】的更多相关文章
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- [luogu P1169] [ZJOI2007]棋盘制作
[luogu P1169] [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的 ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- [ZJOI2007]棋盘制作 (单调栈)
[ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...
- BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)
[ZJOI2007]棋盘制作 时间限制: 20 Sec 内存限制: 162 MB[题目描述]国际象棋是世界上最古老的博 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
随机推荐
- springAOP之代理模式
springAOP指的是在spring中的AOP,什么是AOP,相对于java中的面向对象(oop),在面向对象中一些公共的行为,像日志记录,权限验证等如果都使用面向对象来做,会在每个业务方法中都写上 ...
- Linux中如何安装Apache服务器
Linux中如何安装Apache服务器 由于学习的需要,所有手动安装了一下Apache源码包,安装过程中的问题千奇百怪,但是如果弄清楚了问题出在哪里,那么也不是太难.如果有学习者出现安装中的问题,可仔 ...
- sql 命令使用简单记录
半个月前就想记下用过的SQL命令的!!! 主题: 按时间查询: https://blog.csdn.net/hejpyes/article/details/41863349 左关联: se ...
- dubbo SpringContainer
dubbo SpringContainer Spring启动类容器 SPI service provider interfaces 服务提供借口 Singleton 单例 ThreadSafe 线程安 ...
- zabbix搭建并结合mikoomi插件监控hadoop集群
一.环境说明 系统: CentOS release 6.4 mysql 5.1.67 Apache/2.2.25 二.安装php 由于zabbix提供的frontends是php编写的,因此需要搭建l ...
- Python学习之web框架 Flask
一.通过PIP 安装Flask 1.1 Windows环境安装pip A.首先PIP进入官网(https://pypi.python.org/pypi/pip)下载gz包 B.对gz压缩包进行解压,解 ...
- leetcode个人题解——#56 Merge Intervals
思路,先按照结构体中start进行排序,然后遍历比较前后项是否有重合. 第一次用到三参数形式的sort(),第三个参数的bool函数要写到类外才通过. /** * Definition for an ...
- 用 Python 3 的 async / await 做异步编程
前年我曾写过一篇<初探 Python 3 的异步 IO 编程>,当时只是初步接触了一下 yield from 语法和 asyncio 标准库.前些日子我在 V2EX 看到一篇<为什么 ...
- mongodb redis memcache 对比
从以下几个维度,对 Redis.memcache.MongoDB 做了对比. 1.性能 都比较高,性能对我们来说应该都不是瓶颈. 总体来讲,TPS 方面 redis 和 memcache 差不多,要大 ...
- Leftmost Digit(数学)
Description Given a positive integer N, you should output the leftmost digit of N^N. Input The inp ...