大家好,欢迎来到codeforces专题。

今天选择的问题是1443场次的D题,这题是全场倒数第三题,截止到现在一共通过了2800余人。这题的思路不算难,但是思考过程非常有趣,这也是这一期选择它的原因。

链接:https://codeforces.com/contest/1443

废话就先说到这里,下面我们就来看题吧。

题意

给定n个整数,对于这n个整数我们可以采取两种操作。第一种操作是在数组左侧选择连续的k个整数减1,第二种操作是选择右侧的连续k个整数减1

比如假设数组是[3, 2, 2, 1, 4],比如我们选择k=2,取最左侧进行操作,那么我们会得到[2, 1, 2, 1, 4]。如果我们选择k=3,再取右侧进行操作,可以得到[2, 1, 1, 0, 3]。

现在我们想要知道,给定这样的数组,我们能否通过这两个操作将数组清空。如果可以输出YES,否则的话输出NO。

样例

首先输入一个整数t(),表示测试数据组数。

对于每组测试数据,首先输入一个整数n(),表示数组当中元素的个数。之后输入一行整数()。可以保证,每一组测试数据的n之和不会超过30000.

题解

由于我们对于k没有限制,最多我们可以一次对数组内的n个元素全部减一。所以k不是限制我们的因素,最大的限制其实是在元素本身。

我们分析一下会发现,由于数组当中的元素大小不一,这其实是隐形的限制。举个例子,比如[2, 8, 3]。由于我们只能从两侧开始选择元素进行操作,所以由于2和3比较小,会导致我们没有办法把中间的8消除完。当然无法消除的原因可能有好几种,但基本上都是由于元素的大小不一导致的。

首先我们对这个问题进行一个简单的建模,题目当中没有限制执行的次数,所以减一次和减很多次是一样的。我们可以把可以合并的操作合并在一起,理解成执行一次可以减去任意的值。并且我们可以把操作反向理解,把数组当中的值看成是容器,这样我们从数组当中减去值的操作,就可以等价理解成向容器当中输入水流,这样会容易理解一些。

我的第一想法很简单,我们可以求出每个位置能够从左侧和右侧分别获得的最大数值。只要左右两侧能够获取的流量之和大于等于容器的容积,那么就说明我们可以获取到足够的流量灌满所有的容器。

我很快就写出了代码,建了一个二维数组,dp[i][0]表示第i个元素从左侧源头能够获取的最大流量。dp[i][1]表示第i个元素可以从右侧源头获取到的最大流量。由于我们需要保证每个容器存储的体积不能超过容量,所以我们需要很容易得出递推关系。

dp[i][0] = min(dp[i-1][0], a[i])

关系明确了很容易写出代码:

using namespace std;
 
int a[30006], dp[30006][2];
 
int main() {
    int t, n;
    scanf("%d", &t);
    rep(z, 0, t) {
        scanf("%d", &n);
        rep(i, 1, n+1) scanf("%d", &a[i]);
        MEM(dp, 0x3f);
        // 从左侧递推,获取dp[i][0]
        rep(i, 1, n+1) {
            dp[i][0] = min(dp[i-1][0], a[i]);
        }
        // 从右侧递推,获取dp[i][1]
        Rep(i, n, 0) {
            dp[i][1] = min(dp[i+1][1], a[i]);
        }
 
        bool flag = 1;
        rep(i, 1, n+1) {
            // 如果存在某个元素从左右两侧获取的流量之和无法灌满
            // 则返回NO
            if (dp[i][0] + dp[i][1] < a[i]) {
                flag = 0;
                break;
            }
        }
        puts(flag ? "YES" : "NO");
    }
    return 0;
}

但是很遗憾,这样不能AC,因为dp的数组维护的其实是某个位置从左侧和从右侧能够获取的最大值,这是一个理想情况,很有可能这个理想情况是无法实现的。

举个很简单的反例:[2, 4, 2, 4, 2],这些元素左右两边能够获取到的最大流量值都是2,但是这里是有问题的。观察一下会发现数组当中的两个4是无法同时满足的,无法满足的原因是因为中间的2限制了通过的流量。虽然理论上从左往右和从右往左能够通过的流量上限都是2,但是这个上限是无法同时取到的

这个问题用上述的方法是解决不了的,所以需要重新构思。这里我们深入分析会发现一个比较麻烦的点,在于每个点都有两个源头,我们无法确定流量分配。不过这个问题也很好解决,因为左右两边的流量是没有区别的。所以我们可以以某一侧为主,剩余不够的流量再由另一侧补充。

比如我们可以以左侧为主,把左侧能够获取的流量开启到最大,不够地再通过右侧补充。如果右侧的流量无法补充,那么就说明无解。

我们用dp[i][0]记录i位置从左侧获取的流量,dp[i][1]记录i位置从右侧获取的流量。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <string>
#include <map>
#include <set>
#include <algorithm>
#include "time.h"
#include <functional>
#define rep(i,a,b) for (int i=a;i<b;i++)
#define Rep(i,a,b) for (int i=a;i>b;i--)
#define foreach(e,x) for (__typeof(x.begin()) e=x.begin();e!=x.end();e++)
#define mid ((l+r)>>1)
#define lson (k<<1)
#define rson (k<<1|1)
#define MEM(a,x) memset(a,x,sizeof a)
#define L ch[r][0]
#define R ch[r][1]
const int N=1000050;
const long long Mod=1000000007;
 
using namespace std;
 
int a[30006], dp[30006][2], min_need[30006][2], record[30006][2];
 
int main() {
    int t, n;
    scanf("%d", &t);
    rep(z, 0, t) {
        scanf("%d", &n);
        rep(i, 1, n+1) scanf("%d", &a[i]);
        MEM(dp, 0x3f);
        dp[0][1] = 0;
        bool flag = 1;
        rep(i, 1, n+1) {
            # 如果右侧需要的流量大于容器容积
            if (dp[i-1][1] > a[i]) {
                flag = 0;
                break;
            }
            # 左侧能够获取的流量,因为i-1从右侧获取的流量也会经过i,所以需要减去
            dp[i][0] = min(dp[i-1][0], a[i] - dp[i-1][1]);
            # 需要从右侧获取的流量需要累加
            dp[i][1] = dp[i-1][1] + max(0, a[i] - dp[i][0] - dp[i-1][1]);
        }
        puts(flag ? "YES" : "NO");
    }
    return 0;
}

虽然这个是很简单的动态规划的思想,但是一些细节很容易忽略。比如说i-1位置的右侧流量会流经i以及大于i每一个位置。所以每一个位置的右侧流量是累加的,是越来越大的。只要能够把握住这点,AC是不难的。

总体来说这题的难度不大,对于思维的要求不是很高,但是非常考验思维的缜密性和逻辑性。非常适合用来进行思维锻炼。

今天的文章就到这里,衷心祝愿大家每天都有所收获。如果还喜欢今天的内容的话,请来一个三连支持吧~(点赞、关注、转发

codeforces 1443D,解法简单,思维缜密的动态规划问题的更多相关文章

  1. Codeforces 752C - Santa Claus and Robot - [简单思维题]

    题目链接:http://codeforces.com/problemset/problem/752/C time limit per test 2 seconds memory limit per t ...

  2. Codeforces 729D Sea Battle(简单思维题)

    http://codeforces.com/contest/738/problem/D https://www.cnblogs.com/flipped/p/6086615.html   原 题意:海战 ...

  3. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

  4. POJ 3923 Ugly Windows(——考察思维缜密性的模拟题)

    题目链接: http://poj.org/problem?id=3923 题意描述: 输入一个n*m的屏幕 该屏幕内有至少一个对话框(每个对话框都有对应的字母表示) 判断并输出该屏幕内处于最表层的对话 ...

  5. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  6. Codeforces 932G Palindrome Partition - 回文树 - 动态规划

    题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$ ...

  7. Educational Codeforces Round 60 C 思维 + 二分

    https://codeforces.com/contest/1117/problem/C 题意 在一个二维坐标轴上给你一个起点一个终点(x,y<=1e9),然后给你一串字符串代表每一秒的风向, ...

  8. Educational Codeforces Round 61 F 思维 + 区间dp

    https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...

  9. [Codeforces 1178D]Prime Graph (思维+数学)

    Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...

随机推荐

  1. python 工业日志模块 未来的python日志最佳实践

    目录 介绍 好的功能 安装方法 参数介绍 呆log 参数与 使用方法 版本说明 后期版本规划 todo 感谢 介绍 呆log:工业中,python日志模块,安装即用.理论上支持 python2, py ...

  2. 【鸿蒙开发板试用报告】用OLED板实现FlappyBird小游戏(中)

    小伙伴们久等了,在上一篇<[开发板试用报告]用OLED板实现FlappyBird小游戏(上)>中,我们本着拿来主义的原则,成功的让小鸟在OLED屏幕上自由飞翔起来,下面我们将加入按钮交互功 ...

  3. Spring Boot 2.4发布了,但Spring Cloud用户不推荐着急升级

    前段时间Spring Boot发布了本年度最后一个重要更新版本:Spring Boot 2.4.0. 最近在社群里也开始有讨论关于Spring Boot 2.4的一些使用问题.我发现有很多Spring ...

  4. Verilog 分频器

    verilog设计进阶 时间:2014年5月6日星期二 主要收获: 1. 自己动手写了第一个verilog程序. 题目: 利用10M的时钟,设计一个单周期形状如下的周期波形. 思考: 最开始的想法是: ...

  5. Spring Cloud Alibaba 初体验(六) Seata 及结合 MyBatis 与 MyBatis-Plus 的使用

    一.下载与运行 本文使用 Seata 1.1.0:https://github.com/seata/seata/releases Windows 环境下双击 bin/seata-server.bat ...

  6. 关于esp8266的SDK开发串口打印mismatch map 3,spi_size_map 6 system_partition_table_regist fail解决办法

    最近在学习esp8266 用的sdk开发,烧录碰到个问题,本人使用的esp8266模块是esp8266-12f,模块是4M的也就是32Mbit 参考了网上的很多办法,大部分写的不清楚也没解决,摸索了几 ...

  7. Django结合Websocket进行WebSSH的实现

    什么是webssh? 泛指一种技术可以在网页上实现一个 终端.从而无需 之类的模拟终端工具进行 连接,将 这一比较低层的操作也从 架构扭成了 架构 这样的架构常用在运维制作开发一些堡垒机等系统中,或是 ...

  8. Python中容器指的是什么?

    容器:容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中. 容器是一种可以包含其他类型对象(如列表.元组.字典等)作为元 ...

  9. PyQt(Python+Qt)学习随笔:Qt Designer中部件mimimumSize和maximumSize的含义

    1.mimimumSize mimimumSize表示部件能被缩小到的最小尺寸,单位为像素,缩小到该尺寸后不能再进一步缩小了.如果部件在布局管理器中,且布局管理器也设置了最小尺寸,则部件本身的最小尺寸 ...

  10. 本地web项目部署到服务器里连接不上数据库的解决办法

    今天突然想到把自己之前的项目挂到服务器上,但是用到了数据库,于是给服务器装上了MySQL,想着能赶紧把项目挂上去看看效果,然后并不是一帆风顺,在奋斗了四小时后终于解决了问题的所在. (1)首先我找到了 ...