【六省联考2017】组合数问题 题解(矩阵快速幂优化DP)
题目大意:求$(\sum\limits_{i=0}^n C_{nk}^{ik+r})\ mod \ p$的值。
---------------------
讲真,一开始看到这个题我都没往DP方面想,以为是什么大力推式子的数学题。
设$f_{i,j}$表示考虑前$i$个物品,选出的物品$mod \ k=j$的方案数。最后输出$f_{n,r}$。
易得转移方程:
$f_{i,j}=f_{i-1,j}+f_{i-1,j-1}$
$f_{i,0}=f_{i-1,0}+f_{i-1,k-1}$
看到数据范围想到矩阵加速,有转移矩阵:
$\begin{bmatrix}1&0&\cdots&0&1\\1&1&0&\cdots&0\\0&1&1&\cdots&0\\\vdots&\ddots&\ddots&\ddots&\vdots\\0&0&\cdots&1&1 \end{bmatrix}$
矩阵快速幂乘$nk$次方即可。
注意当$k=1$时只有一个元素,其初始值为2。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,p,k,r;
struct node
{
int a[][];
node(){
memset(a,,sizeof(a));
}
inline void build(){
for (int i=;i<=k;i++) a[i][i]=;
}
};
node operator * (const node x,const node y)
{
node z;
for (int l=;l<=k;l++)
for (int i=;i<=k;i++)
for (int j=;j<=k;j++)
z.a[i][j]=(z.a[i][j]+x.a[i][l]*y.a[l][j])%p;
return z;
}
signed main()
{
cin>>n>>p>>k>>r;int mi=n*k;
node a,ans;ans.build();
for (int i=;i<=k-;i++) a.a[i][i]++,a.a[i][i+]++;
a.a[k][]++,a.a[k][k]++;
while(mi)
{
if (mi&) ans=ans*a;
a=a*a;
mi>>=;
}
printf("%lld",ans.a[k][k-r]);
return ;
}
【六省联考2017】组合数问题 题解(矩阵快速幂优化DP)的更多相关文章
- P3746 [六省联考2017]组合数问题
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...
- 洛谷P3746 [六省联考2017]组合数问题
题目描述 组合数 C_n^mCnm 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...
- [BZOJ4870][六省联考2017]组合数问题(组合数动规)
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 748 Solved: 398[Submit][Statu ...
- bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...
- P3746 【[六省联考2017]组合数问题】
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...
- 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
- LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)
哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...
随机推荐
- day36 解决粘包问题
目录 一.tcp粘包问题出现的原因 二.解决粘包问题low的办法 三.egon式解决粘包问题 四.实现并发 1 tcp 2 udp 一.tcp粘包问题出现的原因 前引: tcp的客户端与服务端进行通信 ...
- js复制内容到剪贴板格式化粘贴到excel中
<input id="Button1" type="button" value="导出EXCEL" onclick="cop ...
- php 修改图片大小
<?php set_time_limit(0);ini_set("memory_limit","500M");$dir = dir('./');while ...
- 数据可视化基础专题(十五):pyecharts 基础(二)flask 框架整合
Flask 前后端分离 Step 1: 新建一个 Flask 项目 $ mkdir pyecharts-flask-demo $ cd pyecharts-flask-demo $ mkdir tem ...
- Python Ethical Hacking - BACKDOORS(5)
File Download: A file is a series of characters. Therefore to transfer a file we need to: 1. Read th ...
- Python Ethical Hacking - BACKDOORS(1)
REVERSE_BACKDOOR Access file system. Execute system commands. Download files. Upload files. Persiste ...
- C++ 线性筛素数
今天要写一篇亲民的博客了,尽力帮助一下那些不会线性筛素数或者突然忘记线性筛素数的大佬. 众所周知,一个素数的倍数肯定不是素数(废话).所以我们可以找到一个方法,普通的筛法(其实不算筛,普通的是判断一个 ...
- 【JVM之内存与垃圾回收篇】JVM与Java体系结构
JVM与Java体系结构 前言 作为Java工程师的你曾被伤害过吗?你是否也遇到过这些问题? 运行着的线上系统突然卡死,系统无法访问,甚至直接OOMM! 想解决线上JVM GC问题,但却无从下手. 新 ...
- 深入浅出Java并发包—CountDownLauch原理分析 (转载)
转载地址:http://yhjhappy234.blog.163.com/blog/static/3163283220135875759265/ CountDownLauch是Java并发包中的一个同 ...
- javascript实战 : 简单的颜色渐变
HTML <div id="color"></div> CSS .item{ display:inline-block; margin:10px; widt ...