基于最邻近算法的分类,本质上是对离散的数据标签进行预测,实际上,最邻近算法也可以用于对连续的数据标签进行预测,这种方法叫做基于最邻近数据的回归,预测的值(即数据的标签)是连续值,通过计算数据点最临近数据点平均值而获得预测值。

一,sklearn的knn回归

scikit-learn实现了两个不同的最邻近回归模型:

  • KNeighborsRegressor:根据每个查询点的最邻近的k个数据点的均值作为预测值,其中,k是用户指定的整数。
  • RadiusNeighborsRegressor:基于查询点的固定半径内的数据点的均值作为预测值,其中r是用户指定的浮点值。

回归模拟器的定义如下,该定义只列出最重要的参数,详细参数请参考sicikit-learn 官网:

sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', metric='minkowski',...)
sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, weights='uniform', algorithm='auto', metric='minkowski',...)

参数注释:

  • radius:寻找的半径、
  • n_neighbors:最邻近的邻居数量
  • algorithm:寻找最邻近的数据点的算法,有效值是['auto','ball_tree','kd_tree','brute']
  • metric:计算距离的度量,详细信息请查看:DistanceMetric
  • weights:权重,默认值weights ='uniform',为每个邻居分配统一的权重。 weights ='distance'分配的权重与距查询点的距离成反比。用于也可以提供定义函数来计算权重。在某些情况下,最好对邻居加权,以使较近的邻居对拟合的贡献更大,这可以通过weights关键字完成。

最基本的最邻近回归使用统一的权重,也就是说,在特定范围中的每个数据点对查询点的分类(回归)的作用是相同的。在某些情况下,对权重点进行加权可能会比较有利,以使邻近的点比远离的点对回归的贡献更大,这可以通过weights关键字完成。默认值weights ='uniform',为所有点分配相等的权重。 weights ='distance'分配的权重与距查询点的距离成反比。

二,基于最邻近的数据点的数量来预测

当使用knn计算某个数据点的预测值时,模型会从训练数据集中选择离该数据点最近的k个数据点,并且把它们的y值取均值,把该均值作为新数据点的预测值:

from sklearn.neighbors import KNeighborsRegressor

对于knn分类,使用score方法评估模型,对于回归的问题,返回的是R^2分数,R^2分数也叫做决定系数,是回归模型预测的优度度量,位于0到1之间,R^2等于1对应完美预测,R^2等于0对应于常数模型,即总是预测训练集响应(y_train)的均值。

from sklearn.datasets import make_regression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import train_test_split kng=KNeighborsRegressor(n_neighbors=5) x_data,y_data=make_regression(n_features=1,n_informative=1,noise=50,random_state=1)
x_train,x_test,y_train,y_test=train_test_split(x_data,y_data,random_state=1) kng.fit(x_train,y_train)
prediction=kng.predict(x_test) kng_test_score=kng.score(x_test,y_test)
kng_train_score=kng.score(x_train,y_train)

print('test data score:{:.2f}'.format(kng_test_score))

三,knn回归模型的优缺点

knn回归有两个重要的参数:最邻近数据点的数量k,数据点之间距离的度量方法。

在实践中,通常使用较小的k值,在knn分类中通常把k值设置为奇数,便于找到多数邻居的标签。默认的距离度量是欧式距离,它在多数情况下的效果都很好,除此之外,还有曼哈顿距离等,详细信息,请阅读《Scipy 学习第3篇:数字向量的距离计算》。

在确定knn回归或knn分类的k值时,可以通过折叠交叉验证来寻找最佳的k值,示例代码如下:

from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV #通过网络方式来获取参数 # 导入iris数据集
iris2=datasets.load_iris()
X2=iris2.data
y2=iris2.target
print(X2.shape,y2.shape) # 设置需要搜索的K值,'n_neightbors'是sklearn中KNN的参数
parameters={'n_neightbors':[1,3,5,7,9,11,13,15]}
knn=KNeighborsClassifier()#注意:这里不用指定参数 # 通过GridSearchCV来搜索最好的K值。这个模块的内部其实就是对每一个K值进行评估
clf=GridSearchCV(knn,parameters,cv=5) #5折
clf.fit(X2,y2) # 输出最好的参数以及对应的准确率
print("最终最佳准确率:%.2f"%clf.best_score_,"最终的最佳K值",clf.best_params_)

knn回归模型的优点之一是模型很容易理解,通常不需要过多的调参就可以得到不错的性能,并且构建模型的速度通常很快。但是使用knn算法时,对数据进行预处理是很重要的,对特征很多的数据集、对于大多数特征值都为0的数据集,效果往往不是很好。

虽然k邻近算法很容易理解,但是由于预测速度慢,且不能处理具有很多特征的数据集,所以,在实践中往往不会用到。

参考文档:

sklearn.neighbors.KNeighborsRegressor

机器学习 第5篇:knn回归的更多相关文章

  1. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  2. 机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾

    作者:寒小阳 && 龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49797143 ht ...

  3. 机器学习笔记(4):多类逻辑回归-使用gluton

    接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. K-NN回归算法

    from sklearn.datasets import load_iris import numpy as np import matplotlib.pyplot as plt iris = loa ...

  6. scikit-learn中机器学习模型比较(逻辑回归与KNN)

    本文源自于Kevin Markham 的模型评估:https://github.com/justmarkham/scikit-learn-videos/blob/master/05_model_eva ...

  7. 机器学习 第五篇:分类(kNN)

    K最近邻(kNN,k-NearestNeighbor)算法是一种监督式的分类方法,但是,它并不存在单独的训练过程,在分类方法中属于惰性学习法,也就是说,当给定一个训练数据集时,惰性学习法简单地存储或稍 ...

  8. 用Python开始机器学习(7:逻辑回归分类) --好!!

    from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...

  9. SVM(支持向量机)与统计机器学习 & 也说一下KNN算法

    因为SVM和统计机器学习内容很多,所以从 http://www.cnblogs.com/charlesblc/p/6188562.html 这篇文章里面分出来,单独写. 为什么说SVM和统计学关系很大 ...

随机推荐

  1. Android Studio 自定义字体显示英文音标

    android:fontFamily="serif" 网上查了很多自定义字体的方式,或多或少都有些麻烦,最后还是尝试着认为内置字体不应该实现不了英文音标问题,就一个一个字体试了一下 ...

  2. Java泛型中的类型参数和通配符类型

    类型参数 泛型有三种实现方式,分别是泛型接口.泛型类.泛型方法,下面通过泛型方法来介绍什么是类型参数. 泛型方法声明方式:访问修饰符 <T,K,S...> 返回类型 方法名(方法参数){方 ...

  3. spark-3-macOS配置hadoop+spark+IDE

    [教程1]https://blog.csdn.net/shiyutianming/article/details/99946797  + [教程2]http://dblab.xmu.edu.cn/bl ...

  4. Windows控件的属性与事件

    Treeview控件重要属性和事件 属性 说明 Nodes Treeview控件中所有树节点 SelectdNode 当前Treeview控件中选定的树节点,如果当前没有选定树节点,返回值为null ...

  5. P4715 【深基16.例1】淘汰赛

    P4715 [深基16.例1]淘汰赛 题目描述 有 2^n(n≤7) 个国家参加世界杯决赛圈且进入淘汰赛环节.我经知道各个国家的能力值,且都不相等.能力值高的国家和能力值低的国家踢比赛时高者获胜.1 ...

  6. Layman 使用ffmpeg-php扩展库实现视频截图(默认图)

    这几天做项目,其中一个需求是用户上传视频文件到服务器,然后服务器自动截取该视频的一帧作为该视频对应的缩略图,服务器端语言采用php编写,找了半天资料,发现ffmpeg-php可以满足该需求,所以下面简 ...

  7. C++ 关键字 enum

    转自:https://blog.csdn.net/cppwork/article/details/18814315 C++ 关键字 enum. 枚举 1.  概念 我们经常需要为某些属性定义一组可选择 ...

  8. 如何使用MATLAB对图片的RGB三种颜色进行提取

    参考: https://jingyan.baidu.com/article/456c463b41de5f0a5831448e.html matlab在图像处理方面,具有很强大的应用.下面将分享如何使用 ...

  9. Java 获取屏幕的宽度和高度

    获取屏幕的宽度和高度 1 import java.awt.Dimension; 2 import java.awt.Toolkit; 3 4 public class Main { 5 6 publi ...

  10. Go path/filepath包

    path/filepath 标准库path中有的功能filepath全部具备, 所以使用filepath即可. isABS() 判断一个路径是不是绝对路径. package main import ( ...