Problem Description

There is a company that has N employees(numbered from 1 to N),every employee in the company has a immediate boss (except for the leader of whole company).If you are the immediate boss of someone,that person is your subordinate, and all his subordinates are your subordinates as well. If you are nobody's boss, then you have no subordinates,the employee who has no immediate boss is the leader of whole company.So it means the N employees form a tree.

The company usually assigns some tasks to some employees to finish.When a task is assigned to someone,He/She will assigned it to all his/her subordinates.In other words,the person and all his/her subordinates received a task in the same time. Furthermore,whenever a employee received a task,he/she will stop the current task(if he/she has) and start the new one.

Write a program that will help in figuring out some employee’s current task after the company assign some tasks to some employee.
 

Input

The first line contains a single positive integer T( T <= 10 ), indicates the number of test cases.

For each test case:

The first line contains an integer N (N ≤ 50,000) , which is the number of the employees.

The following N - 1 lines each contain two integers u and v, which means the employee v is the immediate boss of employee u(1<=u,v<=N).

The next line contains an integer M (M ≤ 50,000).

The following M lines each contain a message which is either

"C x" which means an inquiry for the current task of employee x

or

"T x y"which means the company assign task y to employee x.

(1<=x<=N,0<=y<=10^9)
 

Output

For each test case, print the test case number (beginning with 1) in the first line and then for every inquiry, output the correspond answer per line.
 

Sample Input

1
5
4 3
3 2
1 3
5 2
5
C 3
T 2 1
C 3
T 3 2
C 3
 

Sample Output

Case #1: -1 1 2

思路:

在dfs序上建立线段树 可以把树上问题转化为区间问题 我们可以发现一个点的dfs序之间的数就是他的儿子节点 所以问题转化为 区间跟新+单点查询的基本问题

#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
const int N = 5e4+7;
const int inf = 0x3f3f3f3f;
const double eps = 1e-6;
typedef long long ll;
const ll mod = 1e9+7;
struct edge{
int next,v;
};
edge e[N<<1];
int head[N],cnt,tot,L[N],flag[N],R[N];
void init(){
cnt=0;
tot=0;
memset(head,0,sizeof(head));
memset(flag,0,sizeof(flag));
}
void add(int u,int v){
e[++cnt]=edge{head[u],v};
head[u]=cnt;
}
void dfs(int u){
L[u]=++tot;
for(int i=head[u];i;i=e[i].next){
int v=e[i].v;
dfs(v);
}
R[u]=++tot;
}
struct tree{
int l,r,v,lazy;
}t[N<<2];
void build(int p,int l,int r){
t[p].l=l; t[p].r=r; t[p].v=-1; t[p].lazy=0;
if(l==r) return ;
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
}
void pushdown(int p){
if(t[p].lazy){
t[p<<1].v=t[p].lazy;
t[p<<1|1].v=t[p].lazy;
t[p<<1].lazy=t[p].lazy;
t[p<<1|1].lazy=t[p].lazy;
t[p].lazy=0;
}
}
void update(int p,int l,int r,int v){
if(l<=t[p].l&&t[p].r<=r){
t[p].lazy=v;
t[p].v=v;
return ;
}
pushdown(p);
int mid=(t[p].l+t[p].r)>>1;
if(l<=mid) update(p<<1,l,r,v);
if(r>mid) update(p<<1|1,l,r,v);
}
int query(int p,int x){
if(t[p].l==t[p].r&&t[p].l==x){
return t[p].v;
}
pushdown(p);
int mid=(t[p].l+t[p].r)>>1;
int res;
if(x<=mid) res=query(p<<1,x);
else res=query(p<<1|1,x);
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int t; cin>>t;
int w=0;
while(t--){
cout<<"Case #"<<++w<<":"<<endl;
init();
int n,m; cin>>n;
for(int i=1;i<n;i++){
int u,v; cin>>u>>v;
add(v,u);
flag[u]=1;
}
int s;
for(int i=1;i<=n;i++)
if(!flag[i]){
s=i; break;
}
dfs(s);
build(1,1,n<<1);
cin>>m;
for(int i=1;i<=m;i++){
char op; cin>>op;
if(op=='C'){
int x; cin>>x;
cout<<query(1,L[x])<<endl;
}else{
int x,y; cin>>x>>y;
update(1,L[x],R[x],y);
}
}
}
}

hdu 3974 Assign the task(dfs序上线段树)的更多相关文章

  1. HDU 3974 Assign the task (DFS序 + 线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3974 给你T组数据,n个节点,n-1对关系,右边的是左边的父节点,所有的值初始化为-1,然后给你q个操 ...

  2. HDU 3974 Assign the task(DFS序+线段树单点查询,区间修改)

    描述There is a company that has N employees(numbered from 1 to N),every employee in the company has a ...

  3. HDU 3974 Assign the task (DFS+线段树)

    题意:给定一棵树的公司职员管理图,有两种操作, 第一种是 T x y,把 x 及员工都变成 y, 第二种是 C x 询问 x 当前的数. 析:先把该树用dfs遍历,形成一个序列,然后再用线段树进行维护 ...

  4. HDU 3974 Assign the task(dfs建树+线段树)

    题目大意:公司里有一些员工及对应的上级,给出一些员工的关系,分配给某员工任务后,其和其所有下属都会进行这项任务.输入T表示分配新的任务, 输入C表示查询某员工的任务.本题的难度在于建树,一开始百思不得 ...

  5. bzoj3306: 树(dfs序+倍增+线段树)

    比较傻逼的一道题... 显然求子树最小值就是求出dfs序用线段树维护嘛 换根的时候树的形态不会改变,所以我们可以根据相对于根的位置分类讨论. 如果询问的x是根就直接输出整棵树的最小值. 如果询问的x是 ...

  6. HDU 3974 Assign the task(DFS序)题解

    题意:给出一棵树,改变树的一个节点的值,那么该节点及所有子节点都变为这个值.给出m个询问. 思路:DFS序,将树改为线性结构,用线段树维护.start[ ]记录每个节点的编号,End[ ]为该节点的最 ...

  7. [Assign the task][dfs序+线段树]

    http://acm.hdu.edu.cn/showproblem.php?pid=3974 Assign the task Time Limit: 15000/5000 MS (Java/Other ...

  8. bzoj2819 DFS序 + LCA + 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2819 题意:树上单点修改及区间异或和查询. 思维难度不高,但是题比较硬核. 整体思路是维护每一个结 ...

  9. HDU - 3974 Assign the task (DFS建树+区间覆盖+单点查询)

    题意:一共有n名员工, n-1条关系, 每次给一个人分配任务的时候,(如果他有)给他的所有下属也分配这个任务, 下属的下属也算自己的下属, 每次查询的时候都输出这个人最新的任务(如果他有), 没有就输 ...

随机推荐

  1. MySQL学习Day01

    1.MySQL的层级关系 2.xampp的安装使用 如果之前安装过mysql那么就需要将原来的mysql完全卸载干净 1.卸载之前安装的MySQL 安装xampp需要先卸载之前的mysql,以及更改m ...

  2. 改进你的c#代码的5个技巧(四)

    像每一篇文章一样,我会重复几行.我在我的Core i3 CPU.4GB主内存和Windows 7平台上测试了以下代码.如果你在不同的硬件配置或使用不同的平台,那么你的输出可能会随着我的输出屏幕而变化, ...

  3. 【Linux】记一次xfs分区数据恢复

    项目有一块磁盘无法挂载,而且还没有做RAID.... # mount /dev/sda /xxx 报错 mount: special device /dev/sda/ does not exist   ...

  4. 【Linux】CentOS4 系统最后的网络yum源

    ------------------------------------------------------------------------------------------------- | ...

  5. 【Oracle】CBO优化详解

    SQL优化是数据优化的重要方面,本文将分析Oracle自身的CBO优化,即基于成本的优化方法.Oracle为了自动的优化sql语句需要各种统计数据作为优化基础.外面会通过sql的追踪来分析sql的执行 ...

  6. 分布式系统:xxl-job改造spring-cloud

    目录 改造原因 主要改造思路 调度中心 调度中心 执行器侧 总结 修改后的源码仓库地址:GitHub. : 改造原因 原有的xxl-job使用自己实现的http协议进行注册以及调度等,与目前框架中本身 ...

  7. EnvironmentPostProcessor怎么做单元测试?阿里P7解答

    简介 从Spring Boot 1.3开始,我们可以在应用程序上下文刷新之前使用EnvironmentPostProcessor来自定义应用程序的Environment.Environment表示当前 ...

  8. Linux Ubuntu系统版本通过Crontab设置定时任务的执行

    Linux Ubuntu系统版本通过Crontab设置定时任务的执行 本文由本人收集网络信息总结而来 特别鸣谢:https://linux.zone/2258 1 crontab 简单介绍以及语法使用 ...

  9. EntityFramework Core如何映射动态模型?

    前言 本文我们来探讨下映射动态模型的几种方式,相信一部分童鞋项目有这样的需求,比如每天/每小时等生成一张表,此种动态模型映射非常常见,经我摸索,这里给出每一步详细思路,希望能帮助到没有任何头绪的童鞋, ...

  10. 前端面试之CSS权重问题!

    前端面试之CSS权重问题! 下面的权重按照从小到大来排列! 1.通用选择器(*) 2.元素(类型)选择器 权重1 3.类选择器 权重10 4.属性选择器 5.伪类 6.ID 选择器 权重100 7.内 ...