Solved:3

Rank:105

治哥出题了 我感动哭了

A Graph Game (分块)

题意:1e5个点 2e5条边 s(x)表示与x点直接相邻的点集合

   有两种操作 1种将按输入顺序的边第l条到第r条边翻转 连接->切断 切断->链接

   还有一种询问 s(x)与s(y)是否相等

题解:题解说 可以给每个点随机一个值 然后s(x)可以用与x直接相邻的点xor起来 (还有这种操作???

   然后我们把边分块 翻转操作就是xor操作 每个点之间边的状态是一样的 所以可以共用

   而且对一条边的修改 影响的只有两个点的信息 所以对块两边的边暴力修改他所影响的点

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 5; int n, m, blo;
int bl[MAXN << 1];
int sum[MAXN][505];
int now[MAXN];
int val[MAXN];
int u[MAXN << 1];
int v[MAXN << 1];
int vis[505]; void update(int l, int r) {
for(int i = l; i <= min(r, bl[l] * blo); i++) {
now[u[i]] ^= val[v[i]];
now[v[i]] ^= val[u[i]];
} if(bl[l] != bl[r]) {
for(int i = (bl[r] - 1) * blo + 1; i <= r; i++) {
now[u[i]] ^= val[v[i]];
now[v[i]] ^= val[u[i]];
}
}
for(int i = bl[l] + 1; i < bl[r]; i++) vis[i] ^= 1;
} int main() {
srand(time(NULL));
for(int i = 1; i <= 100000; i++) val[i] = rand() + 1; int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
blo = sqrt(m);
for(int i = 1; i <= m; i++) bl[i] = (i - 1) / blo + 1;
for(int i = 1; i <= n; i++) now[i] = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= bl[m]; j++) sum[i][j] = 0;
for(int i = 1; i <= bl[m]; i++) vis[i] = 1; for(int i = 1; i <= m; i++) {
scanf("%d%d", &u[i], &v[i]);
sum[u[i]][bl[i]] ^= val[v[i]];
sum[v[i]][bl[i]] ^= val[u[i]];
} int qu; scanf("%d", &qu);
while(qu--) {
int opt, x, y;
scanf("%d%d%d", &opt, &x, &y);
if(opt == 1) update(x, y);
else if(opt == 2) {
int ans1 = now[x], ans2 = now[y];
for(int i = 1; i <= bl[m]; i++) {
if(vis[i]) {
ans1 ^= sum[x][i];
ans2 ^= sum[y][i];
}
}
if(ans1 == ans2) printf("1");
else printf("0");
}
}
puts("");
}
return 0;
}

A Graph Game

F Planting Trees

题意:500x500的矩阵 求一个最大的子矩阵 使得区间最大减最小<=M

题解:枚举纵坐标的区间 对于每一个区间 从第一行开始 单调尺取搞一搞

#include <bits/stdc++.h>
using namespace std; int a[505][505];
int zd[505];
int zx[505]; int qd[505];
int qx[505]; int main() {
int T;
scanf("%d", &T);
while(T--) {
int n, m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++)
scanf("%d", &a[i][j]);
} int ans = 1;
for(int j = 1; j <= n; j++) {
for(int k = 1; k <= n; k++) {
zx[k] = 1e5 + 5;
zd[k] = 0;
}
for(int k = j; k <= n; k++) {
for(int i = 1; i <= n; i++) {
zd[i] = max(zd[i], a[i][k]);
zx[i] = min(zx[i], a[i][k]);
} int lx = 1, rx = 0;
int ld = 1, rd = 0; int nowl = 1;
for(int i = 1; i <= n; i++) {
while(lx <= rx && zx[qx[rx]] >= zx[i]) rx--;
qx[++rx] = i;
while(ld <= rd && zd[qd[rd]] <= zd[i]) rd--;
qd[++rd] = i; while(nowl <= i && zd[qd[ld]] - zx[qx[lx]] > m) {
nowl++;
while(lx <= rx && qx[lx] < nowl) lx++;
while(ld <= rd && qd[ld] < nowl) ld++;
}
if(nowl <= i && zd[qd[ld]] - zx[qx[lx]] <= m) {
ans = max(ans, (k - j + 1) * (i - nowl + 1));
}
}
}
}
printf("%d\n", ans);
}
return 0;
}

F Planting Trees

G Removing Stones

题意:n堆石子 每次可以选择两堆不同的各拿走一个 如果能拿完 就表示获胜

   如果石子的和为奇数 则将最少的一堆石子数-1

   问有多少对区间 能获胜

题解:显然 题目等于 计算 区间max * 2 <= 区间和的个数

   考虑反问题 计算max * 2 > 区间和

   然后直接暴力枚举每个点作为最大值 往前搞搞 往后搞搞

   巧妙的是这样的时间复杂度其实并不高 要让这样暴力枚举的时间复杂度退化到n方的数据 显然是ai >= ai+1  * 2
   举个例子长度为5的数组 16 8 4 2 1 能让暴力枚举的复杂度退化到n方 但是ai < 1e9

   均摊一下每个数的平均枚举到log

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[300005];
ll pre[300005]; int main() {
int T;
scanf("%d", &T);
while(T--) {
ll n;
scanf("%lld", &n);
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]); ll ans = 0;
for(int i = 1; i <= n; i++) {
int cnt = 0;
pre[0] = 0;
for(int j = i + 1; j <= n; j++) {
pre[++cnt] = a[j];
pre[cnt] += pre[cnt - 1];
if(pre[cnt] >= a[i]) {
cnt--;
break;
}
} ans += cnt;
ll sum = 0;
for(int j = i - 1; j >= 1; j--) {
sum += a[j];
if(sum >= a[i]) break; ans++;
int l = 0, r = cnt;
int mid = l + r >> 1;
while(l + 1 < r) {
mid = l + r >> 1;
if(sum + pre[mid] < a[i]) l = mid;
else r = mid;
}
if(sum + pre[r] < a[i]) ans += r;
else ans += l;
}
} ans = n * (n - 1) / 2 - ans;
printf("%lld\n", ans);
} return 0;
}

G Removing Stones

2019牛客多校 Round3的更多相关文章

  1. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  2. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  3. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  4. 2019牛客多校 Round4

    Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...

  5. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  6. 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数

    目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...

  7. 2019牛客多校第四场 A meeting

    链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...

  8. [2019牛客多校第二场][G. Polygons]

    题目链接:https://ac.nowcoder.com/acm/contest/882/G 题目大意:有\(n\)条直线将平面分成若干个区域,要求处理\(m\)次询问:求第\(q\)大的区域面积.保 ...

  9. 2019 牛客多校第一场 D Parity of Tuples

    题目链接:https://ac.nowcoder.com/acm/contest/881/D 看此博客之前请先参阅吕凯飞的论文<集合幂级数的性质与应用及其快速算法>,论文中很多符号会被本文 ...

随机推荐

  1. 为什么 TCP 连接的建立需要三次握手

    TCP 的通讯双方需要发送 3 个包(即:三次握手)才能建立连接,本文将通过 3 副图来解释为什么需要 3 次握手才能建立连接. TCP 连接的建立过程本质是通信双方确认自己和对方都具有通信能力的过程 ...

  2. Redis 设计与实现 10:五大数据类型之有序集合

    有序集合 sorted set (下面我们叫zset 吧) 有两种编码方式:压缩列表 ziplist 和跳表 skiplist. 编码一:ziplist zset 在 ziplist 中,成员(mem ...

  3. Python基础语法5-控制流语句

  4. xtrabackup不完全恢复

    例如,在2014年6月26日下午14:00的时候有人误操作drop掉了一张表,由于库不是很大,并且为测试库,并没有访问,这个时候,我们可以进行基于位置和时间点的不完全恢复 先找到早上的备份,查看那xt ...

  5. 检查Mysql主从状态

    .检查MySQL主从同步状态 #!/bin/bash USER=bak PASSWD=123456 IO_SQL_STATUS=$(mysql -u$USER -p$PASSWD -e  show s ...

  6. pod管理调度约束、与健康状态检查

    pod的管理 [root@k8s-master ~]# vim pod.yaml apiVersion: v1 kind: Pod metadata: name: nginx-pod labels: ...

  7. uni-app开发经验分享一: 多页面传值的三种解决方法

    开发了一年的uni-app,在这里总结一些uni-app开发中的问题,提供几个解决方法,分享给大家: 问题描述:一个主页面,需要联通一到两个子页面,子页面传值到主页面,主页面更新 问题难点: 首先我们 ...

  8. CSS响应式布局学习笔记(多种方法解决响应式问题)

    在做web开发的工作中,会遇到需要我给页面根据设计的要求,进行响应式布局,这里跟大家分享下我对于响应式布局的解决方法: 我主要利用的是CSS3 媒体查询,即media queries,可以针对不同的媒 ...

  9. 转 9 jmeter之检查点

    9 jmeter之检查点   jmeter有类似loadrunner检查点的功能,就是断言中的响应断言. 1.响应断言(对返回文字结果进行相应的匹配)右击请求-->添加-->断言--> ...

  10. I/O 复用 multiplexing data race 同步 coroutine 协程

    小结: 1.A file descriptor is considered ready if it is possible to perform the corresponding I/O opera ...