Educational Codeforces Round 89 (Rated for Div. 2) C. Palindromic Paths (思维)

题意:有一个\(n\)x\(m\)的矩阵,从\((1,1)\)出发走到\((n,m)\),问最少修改多少个数,使得所有路径上的数对应相等(e.g:\((1,2)\)和\((n-1,m)\)或\((2,1)\)和\((n,m-1)\)).
题解:我们将二维的点的坐标转化为一维的步数(到\((1,1)\)的路径),统计所有步数相同的数字,然后枚举步数及相对应位置的数字,这些位置上的所有数字都应该相等,所以取一个\(0\)和\(1\)出现次数的最小值即可.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL; int t;
int n,m;
int dis[N][2];
int a[100][100]; int main() {
ios::sync_with_stdio(false);cin.tie(0);
cin>>t;
while(t--){
cin>>n>>m;
me(dis,0,sizeof(dis));
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j){
cin>>a[i][j]; //step=n+m-2;
int step=i+j-2;
dis[step][a[i][j]]++;
}
}
int sum=n+m-2;
int ans=0;
for(int i=0,j=sum;i<j;++i,--j){
ans+=min(dis[i][0]+dis[j][0],dis[i][1]+dis[j][1]);
}
printf("%d\n",ans); } return 0;
}
Educational Codeforces Round 89 (Rated for Div. 2) C. Palindromic Paths (思维)的更多相关文章
- Educational Codeforces Round 89 (Rated for Div. 2) C Palindromic Paths
题目链接:Palindromic Paths 题意: 给你一个n行m列的矩阵,这个矩阵被0或者1所填充,你需要从点(1,1)走到点(n,m).这个时候会有很多路径,每一条路径对应一个01串,你可以改变 ...
- Educational Codeforces Round 89 (Rated for Div. 2) C. Palindromic Paths(贪心)
题目链接:https://codeforces.com/contest/1366/problem/C 题意 有一个 $n \times m$ 的 $01$迷宫,要使从 $(1,1)$ 到 $(n,m) ...
- Educational Codeforces Round 89 (Rated for Div. 2) B. Shuffle(数学/双指针)
题目链接:https://codeforces.com/contest/1366/problem/B 题意 大小为 $n$ 的数组 $a$,除了 $a_x = 1$,其余 $a_i = 0$,依次给出 ...
- Educational Codeforces Round 89 (Rated for Div. 2) A. Shovels and Swords(贪心/数学)
题目链接:https://codeforces.com/contest/1366/problem/A 题意 有两个数 $a$ 和 $b$,每次可以选择从一个数中取 $2$,另一个数中取 $1$,问最多 ...
- Educational Codeforces Round 89 (Rated for Div. 2) A Shovels and Swords B、Shuffle
题目链接:A.Shovels and Swords 题意: 你需要一个木棍和两个钻石可以造出来一把剑 你需要两个木棍和一个钻石可以造出来一把铁锹 你现在有a个木棍,b个钻石,问你最多可以造出来几件东西 ...
- Educational Codeforces Round 89 (Rated for Div. 2)D. Two Divisors 线性筛质因子
题目链接:D:Two Divisors 题意: 给你n个数,对于每一个数vi,你需要找出来它的两个因子d1,d2.这两个因子要保证gcd(d1+d2,vi)==1.输出的时候输出两行,第一行输出每一个 ...
- Educational Codeforces Round 89 (Rated for Div. 2) A. Shovels and Swords (贪心)
题意:你有\(a\)个树枝和\(b\)个钻石,\(2\)个树枝和\(1\)个钻石能造一个铁铲,\(1\)个树枝和\(2\)个钻石能造一把剑,问最多能造多少铲子和剑. 题解:如果\(a\le b\),若 ...
- Educational Codeforces Round 89 (Rated for Div. 2) D. Two Divisors (数学)
题意:有\(n\)组数,对于每组数,问是否能找到两个因子\(d_{1},d{2}\),使得\(gcd(d_{1}+d_{2},a_{i}=1)\),如果有,输出它们,否则输出\(-1\). 题解:对于 ...
- Educational Codeforces Round 89 (Rated for Div. 2) B. Shuffle (数学,区间)
题意:有长为\(n\)的排列,其中\(x\)位置上的数为\(1\),其余位置全为\(0\),询问\(m\)次,每次询问一个区间,在这个区间内可以交换任意两个位置上的数,问\(1\)最后出现在不同位置的 ...
随机推荐
- 经常使用的Sublime Text 快捷键
最常用的 Sublime快捷键:
- DHCP最佳实践(三)
这是Windows DHCP最佳实践和技巧的最终指南. 如果您有任何最佳做法或技巧,请在下面的评论中发布它们. 在本指南(三)中,我将分享以下DHCP最佳实践和技巧. 仅在需要时才使用IP冲突检测 运 ...
- leetcode 93. Restore IP Addresses(DFS, 模拟)
题目链接 leetcode 93. Restore IP Addresses 题意 给定一段序列,判断可能组成ip数的所有可能集合 思路 可以采用模拟或者DFS的想法,把总的ip数分成四段,每段判断是 ...
- 使用 gRPC-UI 调试.NET 5的gPRC服务
在上一篇文章中,我介绍了gRPCurl一个命令行工具,该工具可用于测试gRPC服务的端点,在本文中,我将向您介绍 gRPC-ui, 它可以作为Web工具使用,有点像Postman,但用于gRPC AP ...
- CF625E Frog Fights
有\(n\)只青蛙在一个长度为\(m\)的环上打架:每只青蛙有一个初始位置\(p_i\),和一个跳跃数值\(a_i\).从\(1\)号青蛙开始按序号循环行动,每次若第\(i\)只青蛙行动,则它会向前跳 ...
- Kubernetes之GlusterFS集群文件系统高可用安装,提供动态卷存储
GlusterFS高可用安装 一. 准备工作 安装好的k8s集群,提供其中三个节点给GFS,这三个节点都至少有一个可用的裸块设备 在k8s所有节点安装所需要的组件 # ubuntu16.04 add- ...
- LinuxCentos7下安装Mysql8.x以及密码修改
LinuxCentos7下安装Mysql以及密码修改 引言: 之前都是用Docker或者yum自动安装,这次主要是下载压缩包解压安装,中间也有些小波折,记录如下,以供参考: 1.删除旧的MySQL 检 ...
- fiddler常用过滤
一.过滤器 过滤这块集中在request栏目的Filter部分,可以根据自己的需要过滤掉不需要的,里面的每个模块都可以设置,这里只说常用的和注意点. 1.假如我只关心某个域名下的抓包,这时可以利用fi ...
- 网络优化之net.ipv4.tcp_tw_recycle和tcp_tw_reuse参数
网络优化之net.ipv4.tcp_tw_recycle和tcp_tw_reuse参数 - 一个人默默潜行 - 博客园 https://www.cnblogs.com/ppp1314520818/p/ ...
- https://twistedmatrix.com/documents/current/core/howto/defer.html
https://twistedmatrix.com/documents/current/core/howto/defer.html