Databricks 第9篇:Spark SQL 基础(数据类型、NULL语义)
Spark SQL 支持多种数据类型,并兼容Python、Scala等语言的数据类型。
一,Spark SQL支持的数据类型
整数系列:
- BYTE, TINYINT:表示1B的有符号整数
- SHORT, SMALLINT:表示2B的有符号整数
- INT, INTEGER:表示4B的有符号整数
- LONG, BIGINT:表示8B的有符号整数
小数系列:
- FLOAT, REAL:表示4B的单精度浮点数
- DOUBLE:表示8B的双精度浮点数
- DECIMAL, DEC, NUMERIC:表示任意精度的带符号十进制数字,精确数
日期和时间类型:
- DATE:表示日期
- TIMESTAMP:表示日期和时间
- INTERVAL:表示Calendar Interval
其他类型:
- STRING:文本类型
- BINARY:字节序列
- BOOLEAN:布尔值
复合类型:
- ARRAY<element_type>
- STRUCT<field1_name: field1_type, field2_name: field2_type, …>
- MAP<key_type, value_type>
二,Spark SQL支持的数据类型和pyspark.sql.types 之间的映射关系
- datetime.datetime 对应 TIMESTAMP
- datetime.date 对应 DATE
- list, tuple, array 对应 ARRAY<element_type> 和 STRUCT<field1_name: field1_type, field2_name: field2_type, …>
- dict 对应MAP<key_type, value_type>
- int 或 long 对应整数
- float 对应浮点小数
- decimal.Decimal 对应 精确数
- bool 对应 布尔值
- bytearray 对应 BINARY
- string 对应 文本类型
三,Spark SQL的Date和Timestamp函数
Spark SQL通常使用字符串来表示Date和Timestamp类型的值,字符串要跟Date和Timestamp相互转换,在转换时,可以设置格式参数fmt,按照特定的格式来相互转换。
fmt是格式字符串,由相应的模式来指定格式:
- dd:以两位数字显示月份中的天数
- MM:以两位数字显示月份
- yyyy:以4位数字显示年份
- HH:以2位数字显示24小时制
- ss:以2位数字显示秒数
- S:小数秒
1,表示Date或timestamp
方法1:用字符串转换为Date或timestamp
date '1970-1-03'
timestamp '1970-1-03 04:05:06.78'
方法2:把字符串按照特定的格式转换为Date或timestamp
to_date(date_str[,fmt])
to_timestamp(timestamp_str[,fmt])
方法2:用数字构造Date或timestamp
make_date(year,month,day)
make_timestamp(year,month,day,hour,min,sec[,timezone])
2,把Date和timestamp转换为string
date_format(timestamp,fmt)
举个例子,把Date和timestamp按照特定的格式转换位字符串:
select date_format(date '1970-1-03', "yyyy-MM-dd");
--1970-01-03
select date_format(timestamp '1970-1-03 04:05:06.78', "yyyy-MM-dd HH:mm:ss.SS");
--1970-01-03 04:05:06.78
3,当前的Date和Timestamp
current_date()
current_timestamp()
now() -- current timestamp
4,提取Date和Timestamp的成分
field:是指year、month、day、hour、minute、second,
source:是指Date或Timestamp
date_part(field,source) year(date)
month(date)
day(date)
hour(timestamp)
minute(timestamp)
second(timestamp)
5,unixtimestamp
unix timestamp是用数字来表示timestamp
unix_timestamp([timeExp[format]]) from_unixtime(unix_time,format)
to_unix_timestamp(timeExp[,format])
6,Date和Timestamp操作
以day或month为单位来对Date和Timestamp进行操作:
add_months(start_date,num_months)
months_between(timestamp1,timestamp2[,roundOff]) date_add(start_date,num_days)
date_sub(start_date,num_days)
datediff(endDate,startDate)
截断到特定的时间成分:
-- truncate timestamp
date_trunc(fmt,ts) -- truncate date
trunc(date,fmt)
7,UTC时间
from_utc_timestamp(timestamp,timezone)
to_utc_timestamp(timestamp,timezone)
四,文本(literal)
文本常量是指用文本表示一个固定不变的量,
1,16进制的字节序列
X { 'num [ ... ]' | "num [ ... ]" }
2,Date 和 Timestamp Literal
DATE 'yyyy-[m]m-[d]d[T]'
TIMESTAMP 'yyyy-[m]m-[d]d[T][h]h:[m]m:[s]s.[ms][ms][ms][us][us][us][zone_id]'
五,NULL语义
Spark SQL也支持三值逻辑,任何两个值比较的结果是:True、False和Unknown,NULL代表Unknown(未知值)。
1,比较运算
NULL和任何值(包括NULL)进行比较,返回的都是NULL,为了比较NULL值,Spark提供了一个null-safe的“等于运算符” <=>,该运算符的运算逻辑是:
NULL <=> NULL,返回True
NULL <=> 任意非NULL, 返回False
2,逻辑运算符
Spark支持的逻辑运算符是AND, OR和 NOT
NOT NULL 返回NULL
NULL AND false 返回false,NULL AND true, NULL AND NULL都返回NULL
NULL OR true 返回true, NULL OR NULL,NULL OR false 都返回 NULL
3,判断NULL值的函数
ISNULL(null) 返回true
ISNAN(null) 返回false
参考文档:
SQL reference for Databricks Runtime 7.x
Databricks 第9篇:Spark SQL 基础(数据类型、NULL语义)的更多相关文章
- Oracle知识梳理(三)操作篇:SQL基础操作汇总
Oracle知识梳理(三)操作篇:SQL基础操作汇总 一.表操作 1.表的创建(CREATE TABLE): 基本语句格式: CREATE TABLE table_name ( col_ ...
- (2.5)Mysql之SQL基础——数据类型
(2.5)Mysql之SQL基础——数据类型 关键词:mysql数据类型 目录: 一.整数型 二.小数型(以下均不能使用无符号) 三.日期时间型 四.字符串型 一.整数型 额外参数示例: int [( ...
- LINQ体验(11)——LINQ to SQL语句之Null语义和String/DateTime方法
在本系列中.主要介绍LINQ to SQL基础的东西,由于LINQ太强大了,它对我们寻常使用不同的数据源有着不同的内容,其包含对于SQL Server 数据库的LINQ to SQL:对于XML 文档 ...
- spark 机器学习基础 数据类型
spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vect ...
- Spark SQL with Hive
前一篇文章是Spark SQL的入门篇Spark SQL初探,介绍了一些基础知识和API,可是离我们的日常使用还似乎差了一步之遥. 终结Shark的利用有2个: 1.和Spark程序的集成有诸多限制 ...
- 【转载】Spark SQL之External DataSource外部数据源
http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发 ...
- Spark SQL 源代码分析系列
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...
- 【Spark SQL 源码分析系列文章】
从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二 ...
- Databricks 第6篇:Spark SQL 维护数据库和表
Spark SQL 表的命名方式是db_name.table_name,只有数据库名称和数据表名称.如果没有指定db_name而直接引用table_name,实际上是引用default 数据库下的表. ...
随机推荐
- XCTF EasyHook
无壳,使用IDA直接分析主函数 逻辑很简单,问题的关键是Hook,题目也是EasyHook, 会发现在生成文件后,文件内容是被加密后的,那就怀疑加密函数参与Hook 动态调试一步步来看,先进入4012 ...
- element ui 左侧导航栏
<el-menu class="left-menu" :default-active="$route.name" :unique-opened=" ...
- Sharding-JDBC使用jasypt3.0及以上版本加密数据库连接密码
本文中介绍的是基于Sharding-JDBC 4.0和jasypt 3.0及其以上版本对数据库连接密码进行加密操作 引入依赖 项目的pom.xml中引入maven依赖 <dependency&g ...
- 【剑指offer】02 替换空格
题目地址:替换空格 题目描述 请实现一个函数,将一个字符串中的每个空格替换成"%20".例如,当字符串为We ...
- IDEA控制台打印程序内汉字乱码及txt文本乱码
控制台打印汉字乱码 解决IntelliJ IDEA控制台输出中文乱码问题 txt文本乱码 解决IDEA读取txt文本中显示的中文乱码问题
- Vitis AI--个人调试篇
一.下载VITIS-AI的仓库 单独git clone很慢,因此先将其导入到gitee平台,再执行clone 1. Import VITIS-AI github repo into gitee rep ...
- jdbc编程学习之增删改查(2)
一,enum类型的使用 在SQL中没有布尔类型的数据,我们都使用过布尔类型,当属性的值只用两种情况时.例如性别等.那在数据库对这些属性的值个数比较少时我们应该使用什么数据类型呢?SQL给我们提供了枚举 ...
- HBase内存配置及JVM优化
前言 本文从HBase的内存布局说起,先充分了解HBase的内存区的使用与分配,随后给出了不同业务场景下的读写内存分配规划,并指导如何分析业务的内存使用情况,以及在使用当中写内存Memstore及读内 ...
- 【mysql】- Expalin篇
简介 id:在一个大的查询语句中每个 SELECT 关键字都对应一个唯一的id 与查询优化器有关,假如被优化过,那么可能是上下两个的id都是一样的 select_type:SELECT 关键字对应的那 ...
- [LeetCode]Minimum Moves to Equal Array Elements1,2
1.将每次n-1个数+1,转化为每次最大的数-1 public int minMoves(int[] nums) { /* 看了看答案 ,很巧妙,最后的结果肯定是把数组元素都加到一个相同的值, 也就是 ...