Spark SQL 支持多种数据类型,并兼容Python、Scala等语言的数据类型。

一,Spark SQL支持的数据类型

整数系列:

  • BYTE, TINYINT:表示1B的有符号整数
  • SHORT, SMALLINT:表示2B的有符号整数
  • INT, INTEGER:表示4B的有符号整数
  • LONG, BIGINT:表示8B的有符号整数

小数系列:

  • FLOAT, REAL:表示4B的单精度浮点数
  • DOUBLE:表示8B的双精度浮点数
  • DECIMAL, DEC, NUMERIC:表示任意精度的带符号十进制数字,精确数

日期和时间类型:

  • DATE:表示日期
  • TIMESTAMP:表示日期和时间
  • INTERVAL:表示Calendar Interval

其他类型:

  • STRING:文本类型
  • BINARY:字节序列
  • BOOLEAN:布尔值

复合类型:

  • ARRAY<element_type>
  • STRUCT<field1_name: field1_type, field2_name: field2_type, …>
  • MAP<key_type, value_type>

二,Spark SQL支持的数据类型和pyspark.sql.types 之间的映射关系

  • datetime.datetime 对应 TIMESTAMP
  • datetime.date 对应 DATE
  • list, tuple, array 对应 ARRAY<element_type> 和 STRUCT<field1_name: field1_type, field2_name: field2_type, …>
  • dict 对应MAP<key_type, value_type>
  • int 或 long 对应整数
  • float 对应浮点小数
  • decimal.Decimal 对应 精确数
  • bool 对应 布尔值
  • bytearray 对应 BINARY
  • string 对应 文本类型

三,Spark SQL的Date和Timestamp函数

Spark SQL通常使用字符串来表示Date和Timestamp类型的值,字符串要跟Date和Timestamp相互转换,在转换时,可以设置格式参数fmt,按照特定的格式来相互转换。

fmt是格式字符串,由相应的模式来指定格式:

  • dd:以两位数字显示月份中的天数
  • MM:以两位数字显示月份
  • yyyy:以4位数字显示年份
  • HH:以2位数字显示24小时制
  • ss:以2位数字显示秒数
  • S:小数秒

1,表示Date或timestamp

方法1:用字符串转换为Date或timestamp

date '1970-1-03'
timestamp '1970-1-03 04:05:06.78'

方法2:把字符串按照特定的格式转换为Date或timestamp

to_date(date_str[,fmt])
to_timestamp(timestamp_str[,fmt])

方法2:用数字构造Date或timestamp

make_date(year,month,day)
make_timestamp(year,month,day,hour,min,sec[,timezone])

2,把Date和timestamp转换为string

date_format(timestamp,fmt)

举个例子,把Date和timestamp按照特定的格式转换位字符串:

select date_format(date '1970-1-03', "yyyy-MM-dd");
--1970-01-03
select date_format(timestamp '1970-1-03 04:05:06.78', "yyyy-MM-dd HH:mm:ss.SS");
--1970-01-03 04:05:06.78

3,当前的Date和Timestamp

current_date()
current_timestamp()
now() -- current timestamp

4,提取Date和Timestamp的成分

field:是指year、month、day、hour、minute、second,

source:是指Date或Timestamp

date_part(field,source)

year(date)
month(date)
day(date)
hour(timestamp)
minute(timestamp)
second(timestamp)

5,unixtimestamp

unix timestamp是用数字来表示timestamp

unix_timestamp([timeExp[format]])

from_unixtime(unix_time,format)
to_unix_timestamp(timeExp[,format])

6,Date和Timestamp操作

以day或month为单位来对Date和Timestamp进行操作:

add_months(start_date,num_months)
months_between(timestamp1,timestamp2[,roundOff]) date_add(start_date,num_days)
date_sub(start_date,num_days)
datediff(endDate,startDate)

截断到特定的时间成分:

-- truncate timestamp
date_trunc(fmt,ts) -- truncate date
trunc(date,fmt)

7,UTC时间

from_utc_timestamp(timestamp,timezone)
to_utc_timestamp(timestamp,timezone)

四,文本(literal)

文本常量是指用文本表示一个固定不变的量,

1,16进制的字节序列

X { 'num [ ... ]' | "num [ ... ]" }

2,Date 和 Timestamp Literal

DATE  'yyyy-[m]m-[d]d[T]'
TIMESTAMP 'yyyy-[m]m-[d]d[T][h]h:[m]m:[s]s.[ms][ms][ms][us][us][us][zone_id]'

五,NULL语义

Spark SQL也支持三值逻辑,任何两个值比较的结果是:True、False和Unknown,NULL代表Unknown(未知值)。

1,比较运算

NULL和任何值(包括NULL)进行比较,返回的都是NULL,为了比较NULL值,Spark提供了一个null-safe的“等于运算符” <=>,该运算符的运算逻辑是:

NULL <=> NULL,返回True

NULL <=> 任意非NULL, 返回False

2,逻辑运算符

Spark支持的逻辑运算符是AND, OR和 NOT

NOT NULL 返回NULL

NULL AND false 返回false,NULL AND true, NULL AND NULL都返回NULL

NULL OR true 返回true, NULL OR NULL,NULL OR false 都返回 NULL

3,判断NULL值的函数

ISNULL(null) 返回true

ISNAN(null) 返回false

参考文档:

SQL reference for Databricks Runtime 7.x

NULL semantics

Databricks 第9篇:Spark SQL 基础(数据类型、NULL语义)的更多相关文章

  1. Oracle知识梳理(三)操作篇:SQL基础操作汇总

    Oracle知识梳理(三)操作篇:SQL基础操作汇总 一.表操作 1.表的创建(CREATE TABLE): 基本语句格式:       CREATE TABLE  table_name ( col_ ...

  2. (2.5)Mysql之SQL基础——数据类型

    (2.5)Mysql之SQL基础——数据类型 关键词:mysql数据类型 目录: 一.整数型 二.小数型(以下均不能使用无符号) 三.日期时间型 四.字符串型 一.整数型 额外参数示例: int [( ...

  3. LINQ体验(11)——LINQ to SQL语句之Null语义和String/DateTime方法

    在本系列中.主要介绍LINQ to SQL基础的东西,由于LINQ太强大了,它对我们寻常使用不同的数据源有着不同的内容,其包含对于SQL Server 数据库的LINQ to SQL:对于XML 文档 ...

  4. spark 机器学习基础 数据类型

    spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vect ...

  5. Spark SQL with Hive

    前一篇文章是Spark SQL的入门篇Spark SQL初探,介绍了一些基础知识和API,可是离我们的日常使用还似乎差了一步之遥. 终结Shark的利用有2个: 1.和Spark程序的集成有诸多限制 ...

  6. 【转载】Spark SQL之External DataSource外部数据源

    http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发 ...

  7. Spark SQL 源代码分析系列

    从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...

  8. 【Spark SQL 源码分析系列文章】

    从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二 ...

  9. Databricks 第6篇:Spark SQL 维护数据库和表

    Spark SQL 表的命名方式是db_name.table_name,只有数据库名称和数据表名称.如果没有指定db_name而直接引用table_name,实际上是引用default 数据库下的表. ...

随机推荐

  1. Spark内核-部署模式

    Master URL Meaning local 在本地运行,只有一个工作进程,无并行计算能力. local[K] 在本地运行,有K个工作进程,通常设置K为机器的CPU核心数量. local[*] 在 ...

  2. [leetcode] Add to List 74. Search a 2D Matrix

    /** * Created by lvhao on 2017/8/1. * Write an efficient algorithm that searches for a value in an m ...

  3. Java学习日报9.30

    ********************************** double类型精度问题 ********************************** 1 package test; 2 ...

  4. SpringBoot自动加载路由前缀

    @RequestMapping() 将controller注册到容器中时需要加入路由地址,如果项目层数较深,地址会非常的长,并且有很多一样的路由前缀,每写一个controller都要重复一遍非常的麻烦 ...

  5. 漫谈JSON Web Token(JWT)

    一.背景 传统的单体应用基于cookie-session的身份验证流程一般是这样的: 用户向服务器发送账户和密码. 服务器验证账号密码成功后,相关数据(用户角色.登录时间等)都保存到当前会话中. 服务 ...

  6. 使用 SOS 对 Linux 中运行的 .NET Core 进行问题诊断

    目录 说明 准备一个方便的学习环境 2.x 配置内容 3.x 配置内容 工具介绍 lldb sos plugin 1. attach 到进程上进行调试 2. 分析core dump文件 SOS 案例分 ...

  7. Net/NetCore/.NET5 ORM 六大查询体系 - SqlSugar 高级篇

    框架介绍 SqlSugar ORM是一款老牌国产ORM框架,生命力也比较顽强,从早期ORM不成熟阶段,一直存活到现在,我为什么要一直坚持,那是因为还有很多用户在使用,本来我能够较早推出新开源框架 ,可 ...

  8. 安装Apache2.4 操作系统:Centos7.4

    正式安装Apache2.4 操作系统:Centos7.4,(需要关闭Selinux)1.在每安装一个服务都要养成查看是否安装,如果安装则需要卸载: #[root@yankerp ~]# rpm -qa ...

  9. log4j2文件结构

    标签结构 Configuration properties Appenders Console PatternLayout File RollingRandomAccessFile Filters T ...

  10. 对HTTP请求接口资源下载时间过长的问题分析

    问题描述 我司某产品线有指定业务接口customQuery在线上环境中,与首页一起打开时下载数据的时间明显过长(平均可以达到2s) 注: "与首页一起打开" 的含义是指用户进入WE ...