dp2--合并石子(一)
dp2--合并石子(一)
一、心得
二、题目
石子合并(一)
- 描述
- 有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
- 输入
- 有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开 - 输出
- 输出总代价的最小值,占单独的一行
- 样例输入
-
3
1 2 3
7
13 7 8 16 21 4 18 - 样例输出
-
9
239 - 来源
- 经典问题
三、分析
* 合并石子.cpp
* 分析:
* 状态:
* f[i][j]表示把第i堆石子到第j堆石子合并成一堆的最小代价
* sum[j]表示第1堆石子到第j堆石子的和
* 最终状态:
* f[1][n]
* 初始状态:
* f[i][i]=0;
* 状态转移方程:
* 假设最后一次合并是将(i,k)和(k+1,j)合并
* f[i][j]=min(f[i][k]+f[k+1][j]+sum[j]-sum[i-1]) (k>=i&&k<=j)
dp过程图
四、AC代码
242ms
/*
* 合并石子.cpp
* 分析:
* 状态:
* f[i][j]表示把第i堆石子到第j堆石子合并成一堆的最小代价
* sum[j]表示第1堆石子到第j堆石子的和
* 最终状态:
* f[1][n]
* 初始状态:
* f[i][i]=0;
* 状态转移方程:
* 假设最后一次合并是将(i,k)和(k+1,j)合并
* f[i][j]=min(f[i][k]+f[k+1][j]+sum[j]-sum[i-1]) (k>=i&&k<=j)
*
*
*/ #include <iostream>
#include <cstdio>
using namespace std;
int f[][];
int sum[];
int a[]; //用来存这n堆石子
int n; void readData() {
for (int i = ; i <= n; i++) {
cin >> a[i];
}
} void printRead() {
cout << "n:" << n << endl;
for (int i = ; i <= n; i++) {
cout << a[i] << " ";
}
cout << endl;
} void initArr_sum() {
sum[] = ;
for (int i = ; i <= n; i++) {
sum[i] = a[i] + sum[i - ];
}
} void printArr_sum() {
for (int i = ; i <= n; i++) {
cout << sum[i] << " ";
}
cout << endl;
} void initArr_f() {
//把上一轮的数据清空
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
f[i][j] = 0xfffffff;
}
}
//初始化
for (int i = ; i <= n; i++) {
f[i][i] = ;
}
} void printArr_f() {
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
cout << f[i][j] << " ";
}
cout << endl;
}
} void init() {
readData();
//printRead();
initArr_sum();
//printArr_sum();
initArr_f();
//printArr_f();
} void dp() {
for (int i = n; i >= ; i--) {
for (int j = i + ; j <= n; j++) {
for (int k = i; k <= j; k++) {
f[i][j] = min(f[i][j],
f[i][k] + f[k + ][j] + sum[j] - sum[i - ]);
}
}
}
} void printAns() {
cout << f[][n] << endl;
} int main() {
//freopen("src/in737.txt", "r", stdin);
while (scanf("%d", &n)==) {
init();
dp();
//printArr_f();
printAns();
} return ;
} /*
* 注意点:
* 1、因为求最小值,所以f要初始化为较大值
* f[i][j] = 0xfffffff;
*/
五、注意点
1、因为求最小值,所以f要初始化为较大值
f[i][j] = 0xfffffff;
dp2--合并石子(一)的更多相关文章
- UESTC 886 方老师金币堆 --合并石子DP
环状合并石子问题. 环状无非是第n个要和第1个相邻.可以复制该行石子到原来那行的右边即可达到目的. 定义:dp[i][j]代表从第i堆合并至第j堆所要消耗的最小体力. 转移方程:dp[i][j]=mi ...
- dp优化-四边形不等式(模板题:合并石子)
学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp( ...
- 合并石子(dp)
合并石子 时间限制: 1 Sec 内存限制: 128 MB提交: 7 解决: 7[提交][状态][讨论版][命题人:quanxing] 题目描述 在一个操场上一排地摆放着N堆石子.现要将石子有次序 ...
- CodeForces-884D:Boxes And Balls(合并石子)
Ivan has n different boxes. The first of them contains some balls of n different colors. Ivan wants ...
- Java实现 蓝桥杯 算法提高 合并石子
算法提高 合并石子 时间限制:2.0s 内存限制:256.0MB 问题描述 在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数 ...
- ny737 石子合并(一) 总结合并石子问题
描述: 在一个圆形操场的四周摆放着n 堆石子.现要将石子有次序地合并成一堆. 规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分. 试设计一个算法,计算出将n堆石子合并 ...
- 算法笔记_083:蓝桥杯练习 合并石子(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数.求把所有石子 ...
- 算法提高 合并石子(DP)
问题描述 在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数.求把所有石子合并成一堆的最小花费. 输入格式 输入第一行包含一个 ...
- nyoj 题目737 合并石子(一)
石子合并(一) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的 ...
- CSUOJ 1952 合并石子
现在有n堆石子,第i堆有ai个石子.现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数.求合并所有石子的最小代价. Input 第一行包含一个整数T(T<=50 ...
随机推荐
- html5 上传头像示例及其注意事项
转自[B5教程网]:http://www.bcty365.com/content-142-5244-1.html 这次分享一个简易的上传头像示例,其大致流程为: 一.将选择的图片转为base64字符串 ...
- Oracle数据库使用Analyze提升sql性能
Oracle数据库使用Analyze提升sql性能 如果你不使用analyze完成sql优化,将意味着:你拒绝使用数据库的查询优化器,也失去了使用优化连接的机会.假设你创建了一张拥有100万条记录的临 ...
- Nuxt使用iconfont矢量图标
Nuxt可以使用各种前端UI框架,这些框架一般都自带的有一些icon图标可供用户使用,但是一般项目开发的时候,UI框架自带的icon是不能满足实际项目需求的,这个时候我们可以自己找一些图片放到本地项目 ...
- 阿里云RDS上的一些概念性记录
刚接触RDS,只能对RDS上的一些特性做一些笔记,方便记忆,以下为RDS上的内容摘录,取自官方文档 1 数据备份 可使用命令行或图形界面进行逻辑数据备份.仅限通过 RDS 管理控制台 或 OPEN A ...
- 004-JVM指令集(指令码、助记符、功能描述)
一.JVM指令助记符 1)操作数栈 变量到操作数栈:iload,iload_,lload,lload_,fload,fload_,dload,dload_,aload,aload_ 操作数栈到变量:i ...
- NPOI导出excel表格应用
最近接到一个需求,在原有系统上做二次开发 ,要求导出DataGridView数据到Excel表格中.要求如下: 兼容所有excel版本: 导出后excel各列的样式,字段类型不变. 成型如下:
- PyQt4设置窗口左上角的小图标
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Na ...
- 构建Ruby开发环境(Windows+Eclipse+Aptana Plugin)
1.安装Ruby ①.从http://rubyinstaller.org/downloads/下载安装包:rubyinstaller-2.2.5-x64.exe,直接安装.(so easy) 2.安装 ...
- asp.net 在AcquireRequestState事件中判断登陆验证。
Global中添加AcquireRequestState事件. protected void Application_AcquireRequestState(object sender, EventA ...
- json教程系列(4)-optXXX方法的使用
在JSONObject获取value有多种方法,如果key不存在的话,这些方法无一例外的都会抛出异常.如果在线环境抛出异常,就会使出现error页面,影响用户体验,针对这种情况最好是使用optXXX方 ...