任意门:https://vjudge.net/problem/CodeForces-822D

D. My pretty girl Noora

time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlopolis University". Let's describe the process of choosing the most beautiful girl in the university in more detail.

The contest is held in several stages. Suppose that exactly n girls participate in the competition initially. All the participants are divided into equal groups, x participants in each group. Furthermore the number x is chosen arbitrarily, i. e. on every stage number x can be different. Within each group the jury of the contest compares beauty of the girls in the format "each with each". In this way, if group consists of x girls, then  comparisons occur. Then, from each group, the most beautiful participant is selected. Selected girls enter the next stage of the competition. Thus if n girls were divided into groups, x participants in each group, then exactly  participants will enter the next stage. The contest continues until there is exactly one girl left who will be "Miss Pavlopolis University"

But for the jury this contest is a very tedious task. They would like to divide the girls into groups in each stage so that the total number of pairwise comparisons of the girls is as few as possible. Let f(n) be the minimal total number of comparisons that should be made to select the most beautiful participant, if we admit n girls to the first stage.

The organizers of the competition are insane. They give Noora three integers tl and r and ask the poor girl to calculate the value of the following expression: tf(l) + tf(l + 1) + ... + tr - l·f(r). However, since the value of this expression can be quite large the organizers ask her to calculate it modulo 109 + 7. If Noora can calculate the value of this expression the organizers promise her to help during the beauty contest. But the poor girl is not strong in mathematics, so she turned for help to Leha and he turned to you.

Input

The first and single line contains three integers tl and r (1 ≤ t < 109 + 7, 2 ≤ l ≤ r ≤ 5·106).

Output

In the first line print single integer — the value of the expression modulo 109 + 7.

Example
input

Copy
2 2 4
output

Copy
19
Note

Consider the sample.

It is necessary to find the value of .

f(2) = 1. From two girls you can form only one group of two people, in which there will be one comparison.

f(3) = 3. From three girls you can form only one group of three people, in which there will be three comparisons.

f(4) = 3. From four girls you can form two groups of two girls each. Then at the first stage there will be two comparisons, one in each of the two groups. In the second stage there will be two girls and there will be one comparison between them. Total 2 + 1 = 3 comparisons. You can also leave all girls in same group in the first stage. Then  comparisons will occur. Obviously, it's better to split girls into groups in the first way.

Then the value of the expression is 

题意概括:

有N个人参加选美比赛,可以分成N/x,每组x人。每组的比较次数为x(x-1)/2,f[N]为最后决出冠军所需的比较次数,可以通过改变x的值使f[N]改变。题目给出t,l,r(1 ≤ t < 109 + 7, 2 ≤ l ≤ r ≤ 5·106)。求 t^0⋅f(l)+t^1⋅f(l+1)+⋯+t^r−l⋅f(r) 的最小值对1e9+7的模。

解题思路:

要解决题目的那条算式首先需要解决 f ( N ) 这个问题。

f (N) = (N/x) * x*(x-1)/2;

怎样使得 f(N) 尽可能小呢,模拟几个栗子会发现,分组越多比较的次数越少。比如6可以分为3个2或者2个3,所需比较数分别是6和7,8可以分为2个4 或 4个2,分别是 13、10;

所以尽量分下去,直到分到素数 x 为 1,f(N) = N*(N-1)/2;

综上所述(递推方法):

①如果人数为素数,那f[N]=N(N-1)/2;

②如果不是素数,那就找出最小素因子x,分成N/x,每组x人,f[N]=N/x*f[x]+f[N/x]。

官方题解(内附 x 要为素数的证明,不过方法是dp):

Suppose we have already calculated f(2), f(3), ..., f(r). Then calculating the value of the expression is easy.

Consider process of calculating f(x). Suppose we found optimal answer. Represent this answer as sequence of integers d1, d2, ..., dk — on the first stage we will divide girls into groups of d1 participants, on the second stage into groups of d2 participants and so on. Let us prove that all di should be prime.

Suppose some di is a composite number. Then it can be decomposed into two numbers di = a·b. In addition, let n girls are admitted to the i-th stage. Then on current i-th stage  comparisons will occur. But if we divide this stage into two new stages, then number of comparisons is . So, we proved that all di should be prime. Then it's easy to write DP which will be calculated by transition from the state to the states given by dividing current state by prime divisors. For solving this task we can use Eratosthenes sieve.

Total complexity is same as complexity of Eratosthenes sieve: .

In addition you can prove the fact that we should split the girls into groups by prime numbers in the order of their increasing. This optimization significantly accelerates the algorithm.

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define LL long long
using namespace std;
const int MAXN = 5e6+;
const LL mod = 1e9+; bool check[MAXN];
LL prime[MAXN];
LL f[MAXN];
int cnt;
/*
void check_prime() //线性筛求素数
{
cnt = 0;
memset(check, false, sizeof(check));
for(LL i = 2; i <= MAXN; i++){
if(!check[i]) prime[++cnt] = i;
for(int k = 1; k <= cnt; k++){
if(i*prime[k] > MAXN) break;
check[i*prime[k]] = true;
if(i%prime[k]) break;
}
}
}
*/ void check_prime(){
memset(check, false, sizeof(check));
for(int i=;i*i<=MAXN;i++){
if(!check[i]){
prime[cnt++]=i;
for(int j=i*i;j<=MAXN;j+=i){
check[j]=true;
}
}
}
} int main()
{
check_prime(); f[] = ;
for(LL i = ; i < MAXN; i++){
if(!check[i]){
f[i] = (i*(i-)/)%mod;
}
else{
LL fac;
for(int k = ; k < cnt; k++){
if(i%prime[k] == ){
fac = prime[k];
break;
}
}
f[i] = (i/fac * f[fac] + f[i/fac])%mod;
}
} LL T, l, r;
scanf("%I64d", &T);
scanf("%I64d %I64d", &l, &r);
LL ans = ;
for(LL i = r; i >= l; i--){
ans = (ans*T)%mod;
ans = (ans + f[i])%mod;
}
printf("%I64d\n", ans);
return ;
}

学习:

http://codeforces.com/blog/entry/53068?locale=en

https://www.cnblogs.com/fu3638/p/7115096.html

最后留个坑:

线性筛法O(N)求素数过不了,但是用Eratosthenes sieve.O(NlogN)可以。

CodeForces-822D 【最小素因子应用】的更多相关文章

  1. Codeforces 822D My pretty girl Noora(最小素因子的性质)

    题目大意:一场选美比赛有N个人,可以分成N/x,每组x人.每组的比较次数为x(x-1)/2,f[N]为最后决出冠军所需的比较次数,可以通过改变x的值使f[N]改变.题目给出t,l,r(1 ≤ t &l ...

  2. 题解报告:hdu 5750 Dertouzos(最大真约数、最小素因子)

    Problem Description A positive proper divisor is a positive divisor of a number n, excluding n itsel ...

  3. Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划

    In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...

  4. Yet Another Maxflow Problem CodeForces - 903G (最小割,线段树)

    大意: 两个n元素集合$A$, $B$, $A_i$与$A_{i+1}$连一条有向边, $B_i$与$B_{i+1}$连一条有向边, 给定$m$条从$A_i$连向$B_j$的有向边, 每次询问修改$A ...

  5. Educational Codeforces Round 21 Problem F (Codeforces 808F) - 最小割 - 二分答案

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

  6. Codeforces 343E 最小割树

    题意及思路:https://www.cnblogs.com/Yuzao/p/8494024.html 最小割树的实现参考了这篇博客:https://www.cnblogs.com/coder-Uran ...

  7. POJ-1811-Prime Test(pollard_rho模板,快速找最小素因子)

    题目传送门 sol:Pollard_Rho的模板题,刚看了Pollard_Rho和Miller_Rabin很多原理性的东西看不懂,只是记住了结论勉强能敲代码. Pollard_Rho #include ...

  8. Pythagorean Triples(Codeforces Round #368 (Div. 2) + 构建直角三角形)

    题目链接: https://codeforces.com/contest/707/problem/C 题目: 题意: 告诉你直角三角形的一条边,要你输出另外两条边. 思路: 我们容易发现除2外的所有素 ...

  9. codeforces 402 D. Upgrading Array(数论+贪心)

    题目链接:http://codeforces.com/contest/402/problem/D 题意:给出一个a串和素数串b .f(1) = 0; p为s的最小素因子如果p不属于b , 否则 . a ...

随机推荐

  1. redis 网络架构

    https://blog.csdn.net/simplemurrina/article/details/53890542 GDB  redis https://gitbook.cn/gitchat/c ...

  2. node之Express框架

    Express是node的框架,通过Express我们快速搭建一个完整的网站,而不再只是前端了!所以Express还是非常值得学习的! express有各种中间件,我们可以在官方网站查询其用法. Ex ...

  3. connection reset by peer, socket write error问题排查

    2018-03-15更新:弄明白connection reset产生的原因,见重新分析connection reset by peer, socket write error错误原因 在开发文件上传功 ...

  4. Linux 上安装 weblogic12C (远程图形界面安装) (二)

    上一篇Linux 上安装 weblogic12C (静默安装)介绍了静默方式安装weblogic12C的方式,这一篇主要介绍在windows主机上通过远程图形界面的方式安装weblogic的方式 一. ...

  5. Linux之FTP篇

    内容简介: vsftpd的安装 目录介绍 配置参数解释 锁定用户目录 其他用户不能登录 -------------------------------------------------------- ...

  6. Linux Tomcat 80端口 Port 80 required by Tomcat v8.5 Server at localhost is already in use.

    Port 80 required by Tomcat v8.5 Server at localhost is already in use. The server may already be run ...

  7. .NET Core 部署到CentOS–1.创建项目,简单部署

    开发环境:Windows 10,部署环境:阿里云 CentOS 7.3 1. 创建应用 1) 创建项目, 配置应用生成部署包 2) 配置项目 编辑project.json, 追加环境项, 选项可参考这 ...

  8. C#学习笔记4

    1.C#只支持单一继承,若想要实现多重继承的效果.有2种方式: 第一种为传递继承,A为基类,B继承A,C继承B,通过传递来增迭要包含的元素,但这种继承的设计,在业务上具有明显的从属关系. 第二种为聚合 ...

  9. 继承Application管理生命周期

    继承Application实现Android数据共享 http://www.jianshu.com/p/75a5c24174b2 jessyan提出一个思路,用Application + 接口来管理扩 ...

  10. vim 安装vundle 之curl

    百度出来的博客文章,配置curl.cmd 的内容win7 x64 好像有误 贴下正确的 @rem Do not use "echo off" to not affect any c ...