P3230 [HNOI2013]比赛
$ \color{#0066ff}{ 题目描述 }$
沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛。此次联 赛共N支球队参加,比赛规则如下:
(1) 每两支球队之间踢一场比赛。 (2) 若平局,两支球队各得1分。
(3) 否则胜利的球队得3分,败者不得分。 尽管非常遗憾没有观赏到精彩的比赛,但沫沫通过新闻知道了每只球队的最后总得分, 然后聪明的她想计算出有多少种可能的比赛过程。
譬如有3支球队,每支球队最后均积3分,那么有两种可能的情况:
可能性1 可能性2
球队 A B C 得分 球队 A B C 得分
A - 3 0 3 A - 0 3 3
B 0 - 3 3 B 3 - 0 3
C 3 0 - 3 C 0 3 - 3
但沫沫发现当球队较多时,计算工作量将非常大,所以这个任务就交给你了。请你计算 出可能的比赛过程的数目,由于答案可能很大,你只需要输出答案对\(10^9+7\)取模的结果
\(\color{#0066ff}{输入格式}\)
第一行是一个正整数N,表示一共有N支球队。 接下来一行N个非负整数,依次表示各队的最后总得分。
\(\color{#0066ff}{输出格式}\)
仅包含一个整数,表示答案对10^9+7取模的结果
\(\color{#0066ff}{输入样例}\)
4
4 3 6 4
\(\color{#0066ff}{输出样例}\)
3
\(\color{#0066ff}{数据范围与提示}\)
输入保证
20%的数据满足N<=4,
40%的数据满足N<=6,
60%的数据满足N<=8,
100%的数据 满足3<=N<=10且至少存在一组解。
\(\color{#0066ff}{题解}\)
一看n这么小,先想爆搜吧
肯定是搜索共\(\frac{n*(n-1)}{2}\)场比赛的情况,然后判断是否合法
然后开始剪枝qwq
1、到最后统计答案的时候,肯定要判断合不合法,不如搜索的时候就判断是否超过分数上限
2、对于当前的人,如果他赢了接下来所有的比赛都拿不到该有的分,就剪掉
3、这是一个很强的剪枝,我们设赢的场次为x,输的场次为y,那么显然\(x+y=\frac{n*(n-1)}{2},3x+2y=\sum a_i\)
然后我们就可以解出x和y,从而剪掉大量的分支!
4、 记忆化!
如果人数确定,每个人得分确定,那么答案唯一
所以对于剩下人的方案,可以记忆化一下,把每个人的得分hash一下存起来
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int mod = 1e9 + 7;
std::map<LL, LL> mp;
int n, ans;
int a[20], ls[20], win, orz, b[20];
int dfs(int x, int y) {
if(x == n) return 1;
if(ls[x] + 3 * (n - y + 1) < a[x]) return 0;
LL tot = 0;
if(y > n) {
for(int i = x + 1; i <= n; i++) b[i] = a[i] - ls[i];
std::sort(b + x + 1, b + n + 1, std::greater<int>());
LL zt = 0;
for(int i = x + 1; i <= n; i++) zt = zt * 28LL + b[i];
if(mp.find(zt) != mp.end()) return mp[zt];
else return mp[zt] = dfs(x + 1, x + 2);
}
if(ls[x] + 3 <= a[x] && win) {
ls[x] += 3, win--;
tot += dfs(x, y + 1);
ls[x] -= 3, win++;
}
if(ls[y] + 3 <= a[y] && win) {
ls[y] += 3, win--;
tot += dfs(x, y + 1);
ls[y] -= 3, win++;
}
if(ls[x] + 1 <= a[x] && ls[y] + 1 <= a[y] && orz) {
ls[x]++, ls[y]++, orz--;
tot += dfs(x, y + 1);
ls[x]--, ls[y]--, orz++;
}
return tot;
}
int main() {
n = in();
for(int i = 1; i <= n; i++) win += (a[i] = in());
win -= n * (n - 1);
orz = (n * (n - 1) >> 1) - win;
std::sort(a + 1, a + n + 1, std::greater<int>());
printf("%d", dfs(1, 2) % mod);
return 0;
}
P3230 [HNOI2013]比赛的更多相关文章
- 【题解】HNOI2013比赛
[题解][P3230 HNOI2013]比赛 将得分的序列化成样例给的那种表格,发现一行和一列是同时确定的.这个表格之前是正方形的,后来长宽都减去一,还是正方形.问题形式是递归的.这就启示我们可以把这 ...
- 【BZOJ3139】[HNOI2013]比赛(搜索)
[BZOJ3139][HNOI2013]比赛(搜索) 题面 BZOJ 洛谷 题解 双倍经验
- [HNOI2013]比赛 (用Hash实现记忆化搜索)
[HNOI2013]比赛 题目描述 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联 赛共N支球队参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局, ...
- [HNOI2013]比赛 搜索
[HNOI2013]比赛 搜索. LG传送门 直接暴力有60,考场上写的60,结果挂成40. 考虑在暴力的同时加个记忆化,把剩下的球队数和每支球队的得分情况hash一下,每次搜到还剩\(t\)个队的时 ...
- [BZOJ3139][HNOI2013]比赛(搜索)
3139: [Hnoi2013]比赛 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1439 Solved: 719[Submit][Status] ...
- BZOJ1306 [CQOI2009]match循环赛/BZOJ3139 [Hnoi2013]比赛[dfs剪枝+细节题]
地址 看数据范围很明显的搜索题,暴力dfs是枚举按顺序每一场比赛的胜败情况到底,合法就累计.$O(3^{n*(n-1)/2})$.n到10的时候比较大,考虑剪枝. 本人比较菜所以关键性的剪枝没想出来, ...
- [BZOJ3139][HNOI2013] 比赛
Description 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联 赛共N支球队参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局,两支球队各 ...
- 3139:[HNOI2013]比赛 - BZOJ
题目描述 Description 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联赛共N只队伍参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局,两支 ...
- bzoj 3139: [Hnoi2013]比赛
Description 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联 赛共N支球队参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局,两支球队各得 ...
随机推荐
- Uboot详细解析2
1.第二阶段的主线函数位于u-boot-2010.06/arch/arm/lib/board.c. 第二阶段的功能: <1> 初始化本阶段要使用到的硬件设备. 设置时钟.初始化串口. bo ...
- ubuntu16配置mysql5.7主从同步
测试环境如下: master: 10.0.0.26 slave01: 10.0.0.27 slave02: 10.0.0.28 一.三台机均安装mysql-server5.7 $ sudo apt-g ...
- 关于Android使用Instrumentation做功能测试的时候遇到的一个问题
最近在看测试方面的东西,看到官网上有一个使用Instrumentation做功能测试的例子,自己敲了敲,但是在自己的手机上就是测不过. 经过调试,我发现是我手机上的输入法把输入事件拦截了,需要多输入一 ...
- 面试中的C++常见问题
1.在C++ 程序中调用被C 编译器编译后的函数,为什么要加extern “C”? 答:首先,extern是C/C++语言中表明函数和全局变量作用范围的关键字,该关键字告诉编译器,其声明的函数和变量可 ...
- codeforce469DIV2——C. Zebras
题意 0, 010, 01010 这一类的01交替且开头和结尾都为0的序列被称为zebra序列.给出一段01序列,尝试能否把他分为k个子序列使得每个子序列都是zebra序列. 分析 这个题应该算是水题 ...
- 值得一做》关于数学与递推 BZOJ1002 (BZOJ第一页计划)(normal+)
什么都不说先甩题目 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之 ...
- jquery on事件在IE8下失效的一种情况,及解决方法/bootstrap空间绑定控件事件不好用
同事在复制bootstrap中的select控件之后,发现用$('.selectpicker').selectpicker();刷新下拉框控件不好使,后来发现是用原生js克隆的方法obj.cloneN ...
- jq获取table总行数
var rows = $('table').find("tr").length;
- 1.介绍templates
我们现在要计算int和double类型数据的平方,我们就需要2个函数: #include <iostream> using namespace std; int square(int x) ...
- .NET读取服务器或本地文件
//把本地文件信息读入数据流中 FileStream stream = new FileStream(path, FileMode.Open, FileAcces ...