[BZOJ1797][AHOI2009]最小割Mincut
sol
一条边出现在最小割集中的必要条件和充分条件。
先跑出任意一个最小割,然后在残余网络上跑出\(scc\)。
一条边\((u,v)\)在最小割集中的必要条件:\(bel[u]!=bel[v]\)
一条边\((u,v)\)在最小割集中的充分条件:\(bel[u]=bel[S],bel[v]=bel[T]\)
code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='0') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 4005;
const int inf = 1e9;
struct edge{int to,nxt,w;}a[N*30];
int n,m,s,t,head[N],cnt=1,dep[N],cur[N],dfn[N],low[N],vis[N],Stack[N],top,bel[N],scc;
queue<int>Q;
void link(int u,int v,int w)
{
a[++cnt]=(edge){v,head[u],w};
head[u]=cnt;
a[++cnt]=(edge){u,head[v],0};
head[v]=cnt;
}
bool bfs()
{
memset(dep,0,sizeof(dep));
dep[s]=1;Q.push(s);
while (!Q.empty())
{
int u=Q.front();Q.pop();
for (int e=head[u];e;e=a[e].nxt)
if (a[e].w&&!dep[a[e].to])
dep[a[e].to]=dep[u]+1,Q.push(a[e].to);
}
return dep[t];
}
int dfs(int u,int f)
{
if (u==t) return f;
for (int &e=cur[u];e;e=a[e].nxt)
if (a[e].w&&dep[a[e].to]==dep[u]+1)
{
int tmp=dfs(a[e].to,min(a[e].w,f));
if (tmp) {a[e].w-=tmp;a[e^1].w+=tmp;return tmp;}
}
return 0;
}
void Dinic()
{
while (bfs())
{
for (int i=1;i<=n;++i) cur[i]=head[i];
while (dfs(s,inf)) ;
}
}
void Tarjan(int u)
{
dfn[u]=low[u]=++cnt;
Stack[++top]=u;vis[u]=1;
int v;
for (int e=head[u];e;e=a[e].nxt)
if (a[e].w)
{
v=a[e].to;
if (!dfn[v]) Tarjan(v),low[u]=min(low[u],low[v]);
else if (vis[v]) low[u]=min(low[u],dfn[v]);
}
if (dfn[u]==low[u])
{
++scc;
do{
v=Stack[top--];
vis[v]=0;bel[v]=scc;
}while (u!=v);
}
}
int main()
{
n=gi();m=gi();s=gi();t=gi();
for (int i=1;i<=m;++i)
{
int u=gi(),v=gi(),w=gi();
link(u,v,w);
}
Dinic();cnt=0;
for (int i=1;i<=n;++i) if (!dfn[i]) Tarjan(i);
for (int i=1;i<=m;++i)
{
int u=a[i<<1|1].to,v=a[i<<1].to;
printf("%d ",bel[u]!=bel[v]&&!a[i<<1].w);
printf("%d\n",bel[u]==bel[s]&&bel[v]==bel[t]);
}
return 0;
}
[BZOJ1797][AHOI2009]最小割Mincut的更多相关文章
- BZOJ1797:[AHOI2009]最小割(最小割)
Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...
- 【BZOJ1797】[AHOI2009]最小割(网络流)
[BZOJ1797][AHOI2009]最小割(网络流) 题面 BZOJ 洛谷 题解 最小割的判定问题,这里就当做记结论吧.(源自\(lun\)的课件) 我们先跑一遍最小割,求出残量网络.然后把所有还 ...
- P4126 [AHOI2009]最小割
题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通 ...
- P4126 [AHOI2009]最小割(网络流+tarjan)
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...
- 洛谷P4126 [AHOI2009]最小割
题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...
- AHOI2009最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1072 Solved: 446[Submit] ...
- [AHOI2009]最小割
题目 最小割的可行边和必须边 可行边\((u,v)\)需要满足以下两个条件 满流 残量网络中不存在\(u\)到\(v\)的路径 这个挺好理解的呀,如果存在还存在路径的话那么这条边就不会是瓶颈了 必须边 ...
- [AHOI2009]最小割 最小割可行边&必须边
~~~题面~~~ 题解: 做这题的时候才知道有最小割可行边和必须边这种东西..... 1,最小割可行边, 意思就是最小割中可能出现的边. 充要条件: 1,满流 2,在残余网络中找不到x ---> ...
- 洛谷$P4126\ [AHOI2009]$最小割 图论
正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...
随机推荐
- 联合文件系统 unionfs
- js判断有无属性
访问元素属性 getAttribute 不存在返回null,特性名可不区分大小写 dom对象访问公共属性,自定义属性不能访问,div.id 访问对象属性 1.使用in关键字 该方法可以判断对象的自有属 ...
- 每天一个Linux命令(53)service命令
service命令用于对系统服务进行管理. (1)用法: 用法: service [服务] [操作] (2)功能: 功能: service命令用于启动.停止.重 ...
- Android修改init.rc和init.xx.rc文件【转】
本文转载自:https://blog.csdn.net/u013686019/article/details/47981249 一.文件简介 init.rc:Android在启动过程中读取的启动脚本文 ...
- MIPI DBI\DPI\DSI简介【转】
本文转载自:http://blog.csdn.net/longxiaowu/article/details/24249971 (1)DBI接口 A,也就是通常所讲的MCU借口,俗称80 system接 ...
- JAVA基础补漏--基础数据类型与引用数据类型
==在不同数据类型中意义不同. 在基础数据类型中,表示的是数值的比较. 在引用数据类型中,表示的是内存地址值的比较. 一.基本数据类型: byte:Java中最小的数据类型,在内存中占8位(bit), ...
- RequestMapping请求映射方式
1.标准映射 规则: 1) @RequestMapping可以设置在类上,也可以设置在方法上 2) 请求的映射规则是:类上的RequestMapping + 方法上的RequestMapping 3) ...
- XXL-Job路由策略
企业项目中所有的任务调动通过XXL-Job 去管理调度 路由策略类似于Nginx哦 XXL-Job实际封装的是Quartz. 关于分片广播,执行器集群部署时候,任务路由策略选择“”分片广播”情况下,一 ...
- Centos7 远程登录端口22 设置
第一步 #查看本机是否安装SSH软件包 [root@localhost ~]# rpm -qa | grep ssh openssh-server-6.6.1p1-12.el7_1.x86_64 op ...
- COUNT(DISTINCT a.TransportOrderID)的用法
DECLARE @StartDate DATETIME= '2017-12-20 00:00:00';DECLARE @EndDate DATETIME= '2017-12-26 00:00:00'; ...