洛谷 P3205 [HNOI2010]合唱队
题目链接
题解
区间dp
\(f[i][j]\)表示i~j区间最后一次插入的是\(a[i]\)
\(g[i][j]\)表示i~j区间最后一次插入的是\(a[j]\)
然后就是普通区间dp转移
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
inline int gi() {
bool f = 0; char c = getchar();
RG int x = 0;
while (c!='-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = 1, c = getchar();
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x:x;
}
using namespace std;
const int N = 1010, Mod = 19650827;
int a[N], f[N][N], g[N][N];
//f最后一次插在前面,g插在后面
int main() {
int n = gi();
for (int i = 1; i <= n; i++) a[i] = gi();
for (int i = 1; i <= n; i++)
f[i][i] = 1;
for (int len = 1; len < n; len++) {
for (int i = 1; i+len <= n; i++) {
int j = i+len;
f[i][j] = (f[i+1][j]*(a[i+1]>a[i]) + g[i+1][j]*(a[j]>a[i])) % Mod;
g[i][j] = (g[i][j-1]*(a[j]>a[j-1]) + f[i][j-1]*(a[i]<a[j])) % Mod;
}
}
printf("%d\n", (f[1][n]+g[1][n])%Mod);
return 0;
}
洛谷 P3205 [HNOI2010]合唱队的更多相关文章
- 洛谷 P3205 [HNOI2010]合唱队 解题报告
P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...
- 洛谷——P3205 [HNOI2010]合唱队
P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...
- [洛谷P3205] HNOI2010 合唱队
问题描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...
- 洛谷 P3205 [HNOI2010]合唱队(区间dp)
传送门 解题思路 观察队形的组成方式可以得出,最后一名加入区间i...j的人要么是在i位置上,要么是在j位置上,所以我们可以用dp[i][j][0]表示区间i...j最后一个加入的人站在i位置上的方案 ...
- 洛谷P3205 [HNOI2011]合唱队 DP
原题链接点这里 今天在课上听到了这个题,听完后觉得对于一道\(DP\)题目来说,好的状态定义就意味着一切啊! 来看题: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需 ...
- 「区间DP」「洛谷P3205」「 [HNOI2010]」合唱队
洛谷P3205 [HNOI2010]合唱队 题目: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为 A 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共 n 个 ...
- 【题解】洛谷P3205【HNOI2010】合唱队
洛谷 P3205:https://www.luogu.org/problemnew/show/P3205 复习区间DPing 思路 把理想队列拆分成 第一个和后面几个 划分成求后面几个的理想队列 最后 ...
- 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...
- Bzoj2002/洛谷P3203 [HNOI2010]弹飞绵羊(分块)
题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是 ...
随机推荐
- SQL Server 触发器触发器
内容摘抄自http://www.cnblogs.com/hoojo/archive/2011/07/20/2111316.html,只供自己笔记使用 触发器是一种特殊类型的存储过程,它不同于之前的我们 ...
- window7 和ubuntu 双系统时 ubuntu不能引导怎么办?
假如你的Ubuntu的 / 分区是sda9,又假如 /boot分区是 sda6,在终端下输入sudo -imount /dev/sda7 /mntmount /dev/sda6 /mnt/boot ( ...
- IFC标准是为了满足建筑行业的信息交互与共享而产生的统一数据标准,是建 筑行业事实上的数据交换与共享标准。本文概要介绍了IFC标准的产生及发展 历程,IFC的整体框架结构,简要说明了IFC标准的实现方法和过程,描述了 当前的应用以及我们应该更加积极地利用IFC标准为建筑软件行业服务。
- EZOJ #202
传送门 分析 我们知道选一个点的代价就是他所有出边边权的异或和 由于一条边如果两个端点均选边权会异或两次变回0,所以不必担心重复的情况 于是直接跑线性基即可 代码 #include<bits/s ...
- Vue.js组件调用用及其组件通信
1.需要import,然后components注册.然后如下代码调用. <template> <header></header> //注册后才能这样使用 <b ...
- 转:Linux awk 命令 说明
一. AWK 说明 awk是一种编程语言,用于在linux/unix下对文本和数据进行处理.数据可以来自标准输入.一个或多个文件,或其它命令的输出.它支持用户自定义函数和动态正则表达式等先进功能,是 ...
- [GO]变量内存和变量地址
package main import "fmt" func main() { //每个变量都有两层含义,变量的内存和变量的地址 fmt.Printf("a = %d\n ...
- Linux网络编程IPv4和IPv6的inet_addr、inet_aton、inet_pton等函数小结(转)
原文:http://blog.csdn.net/ithomer/article/details/6100734 知识背景: 210.25.132.181属于IP地址的ASCII表示法,也就是字符串形式 ...
- 如何确定tabcontrol哪一页码是活跃页???
tabControl1.SelectedIndex属性 显示了现在显示的是哪一页码内的控件.
- Linux相关常用工具
Xshell Xshell可以在Windows界面下用来访问远端不同系统下的服务器,从而比较好的达到远程控制终端的目的. 通常需要通过vpn访问.建立vpn隧道可以通过FortiClient 或者 I ...