题目大意:

给定A,B两种字符串,问他们当中的长度大于k的公共子串的个数有多少个

这道题目本身理解不难,将两个字符串合并后求出它的后缀数组

然后利用后缀数组求解答案

这里一开始看题解说要用栈的思想,觉得很麻烦就不做了,后来在比赛中又遇到就后悔了,到今天看了很久才算看懂

首先建一个栈,从栈底到栈顶都保证是单调递增的

我们用一个tot记录当前栈中所有项和一个刚进入的子串匹配所能得到的总的子串的数目(当然前提是,当前进入的子串height值比栈顶还大,那么和栈中任意一个子串匹配都保持当前栈中记录的那时候入栈的height值)

但是若height不比栈顶大,说明从栈顶开始到刚好比它小的这一段tot有多加的部分,这部分就是height值多出来的那块,然后把这部分都视作height值为当前的height值,因为后面子串进入,它的height值总是取决于那段区间的最小值,所以不会产生影响,这样就可以把所有比当前height大的都弹出栈,这样就达到了O(n)的复杂度

这里用q[][]手写栈

q[i][0]表示栈中第i号元素记录时候的height值,q[i][1]表示在这个height值上覆盖了q[i][1]个子串

 #include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define INF 0x3f3f3f3f
#define ll long long
const int MAXN = *;
int sa[MAXN] , rank[MAXN] , height[MAXN];
int wa[MAXN] , wb[MAXN] , wsf[MAXN] , wv[MAXN];
int a[MAXN] , k;
char str1[MAXN] , str2[MAXN];
int q[MAXN][]; int cmp(int *r , int a , int b , int l)
{
return r[a]==r[b] && r[a+l]==r[b+l];
} void getSa(int *r , int *sa , int n , int m)
{
int *x = wa , *y = wb , *t;
for(int i= ; i<m ; i++) wsf[i]=;
for(int i= ; i<n ; i++) wsf[x[i]=r[i]]++;
for(int i= ; i<m ; i++) wsf[i]+=wsf[i-];
for(int i=n- ; i>= ; i--) sa[--wsf[x[i]]] = i; int i,j,p=;
for(j= ; p<n ; j*= , m=p)
{
for(p= , i=n-j ; i<n ; i++) y[p++] = i;
for(i= ; i<n ; i++) if(sa[i]>=j) y[p++] = sa[i]-j; for(i= ; i<n ; i++) wv[i]=x[y[i]];
for(i= ; i<m ; i++) wsf[i]=;
for(i= ; i<n ; i++) wsf[wv[i]]++;
for(i= ; i<m ; i++) wsf[i]+=wsf[i-];
for(i=n- ; i>= ; i--) sa[--wsf[wv[i]]] = y[i]; for(t=x , x=y , y=t , x[sa[]]= , p= , i=; i<n ; i++)
x[sa[i]] = cmp(y , sa[i-] , sa[i] , j)?p-:p++;
}
return ;
} void callHeight(int *r , int *sa , int n)
{
for(int i= ; i<=n ; i++) rank[sa[i]]=i;
int i , j , k=;
for(i= ; i<n ; height[rank[i++]]=k)
for(j=sa[rank[i]-] , k?k--: ; r[i+k]==r[j+k] ; k++) ;
return;
} ll solve(int len1 , int len2)
{
ll ans = ;
//B串中的子串不断匹配rank比其高的A子串
int top = ;
ll tot = , cnt = ;
for(int i= ; i<=len1+len2+ ; i++){
if(height[i]<k){
top = tot = ;
continue;
}
cnt = ;
if(sa[i-]<len1){
cnt ++;
tot += height[i]-k+;
}
while(top&&height[i]<=q[top][]){
tot -= q[top][]*(q[top][]-height[i]);
cnt += q[top][];
top--;
}
q[++top][] = height[i];
q[top][] = cnt;
if(sa[i]>len1) ans+=tot;
}
//A串中的子串不断匹配rank比其高的B子串
tot = top = ;
for(int i= ; i<=len1+len2+ ; i++){
if(height[i]<k){
top = tot = ;
continue;
}
cnt = ;
if(sa[i-]>len1){
cnt ++;
tot += height[i]-k+;
}
while(top&&height[i]<=q[top][]){
tot -= q[top][]*(q[top][]-height[i]);
cnt += q[top][];
top--;
}
q[++top][] = height[i];
q[top][] = cnt;
if(sa[i]<len1) ans+=tot;
}
return ans;
} int main()
{
// freopen("a.in" , "r" , stdin); while(scanf("%d" , &k) , k)
{
scanf("%s%s" , str1 , str2);
int len1 = strlen(str1) , len2 = strlen(str2);
for(int i= ; i<len1 ; i++) a[i] = (int)str1[i];
a[len1] = ;
for(int i= ; i<len2 ; i++) a[i+len1+] = (int)str2[i];
a[len1+len2+] = ; getSa(a , sa , len1+len2+ , );
callHeight(a , sa , len1+len2+); // for(int i=0 ; i<len1+len2+2 ; i++) cout<<"rank i: "<<i<<" "<<rank[i]<<endl;
// for(int i=1 ; i<len1+len2+2 ; i++) cout<<"xixi: "<<height[i]<<endl;
ll ans = solve(len1 , len2);
printf("%I64d\n" , ans);
}
return ;
}

POJ 3415 后缀数组+单调栈的更多相关文章

  1. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  2. BZOJ_3879_SvT_后缀数组+单调栈

    BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...

  3. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  4. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

  5. 【BZOJ3879】SvT 后缀数组+单调栈

    [BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...

  6. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  7. BZOJ4199 [Noi2015]品酒大会 【后缀数组 + 单调栈 + ST表】

    题目 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品 酒家"和"首席猎手"两个奖项,吸 ...

  8. poj 3415 Common Substrings(后缀数组+单调栈)

    http://poj.org/problem?id=3415 Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Sub ...

  9. poj 3415 Common Substrings——后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 因为求 LCP 是后缀数组的 ht[ ] 上的一段取 min ,所以考虑算出 ht[ ] 之后枚举每个位置作为右端的贡献. 一开始想 ...

随机推荐

  1. 【实现高可效的代理模式-Squid】

    普通正向代理 首先安装squid代理软件包: 端口控制 在squid server端作端口访问控制,把默认的3128端口改为1000端口 同时把squid服务代理端口添加到selinux安全子系统的允 ...

  2. sencha inspector(调试工具)

    Sencha Inspector 一:安装sencha inspector 使用Sencha Inspector下载Ext JS试用版(可在此处获得). 下载后,双击下载的文件以启动安装程序,然后按照 ...

  3. com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown column

    com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown column …… 出现这个异常的很大可能性是 数据库是没有问题的 ...

  4. Mina 组件介绍之 IoAcceptor 与 IoConnector

    在网络通信中,Socket通信的双方分为服务端与客户端,在Java NIO 的实现中采用Socket/ServerSocket, SocketChannel/ServerSocketChannel分别 ...

  5. Mysql错误积累001-load data导入文件数据出现1290错误

    错误出现情景 在cmd中使用mysql命令,学生信息表添加数据.使用load data方式简单批量导入数据. 准备好文本数据: xueshengxinxi.txt 文件  数据之间以tab键进行分割 ...

  6. ctf题目writeup(6)

    2019.2.2 依旧是bugku上面的题目,地址:https://ctf.bugku.com/challenges 1. 解压后是60多个out.zip,都是真加密,里面都是1kb的data.txt ...

  7. iScroll实现下拉刷新上拉加载

    前言 初学iscroll这个控件,给我的一个感觉还是蛮不错的. 什么是iScroll:是目前最成熟的自定义滚动解决方案之一,在移动端和PC有很好的兼容性.iScroll官方提供了5个不同的版本 isc ...

  8. R语言学习笔记(十七):data.table包中melt与dcast函数的使用

    melt函数可以将宽数据转化为长数据 dcast函数可以将长数据转化为宽数据 > DT = fread("melt_default.csv") > DT family_ ...

  9. 如何保证HashMap线程安全

    可使用Java 1.5推荐的java.util.concurrent包ConcurrentHashMap来实现,内部不再使用类似HashTable的synchronized同步锁,而是使用Reentr ...

  10. shell重温---基础篇(参数传递&echo命令)

    经过前两天的学习,关于shell的基础算是知道的一般般啦,最起码不算是小白了(纯属意淫).今天就来点干货哈.   首先是运行shell脚本时的参数传递.脚本内获取参数的格式为$n.n代表了一个数字,例 ...