[HAOI2008]圆上的整点(数论)
题目的所求可以转化为:
\(y^2=r^2-x^2\)(其中r,x,y均为整数)
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为整数)
不妨设\((r-x)=d*u\)-------① \((r+x)=d*v\)-------②(其中\(gcd(u,v)=1\))
则有\(y^2=d^2*u*v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)
则有\(y^2=d^2*s^2*v^2\),即\(y=d*s*v\)
②-①得\(x=\frac{ t^2-s^2 }{2}*d\)
②+①得\(2*r=(t^2+s^2)*d\)
然后枚举\(2*r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(s,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)
最后的答案为\((ans+1)*4\),(\(+1\)是因为坐标轴上有一点,\(*4\)是因为4个象限)
注意:小心乘法运算时爆longlong
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
il int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
il void work(int d)
{
for(re int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(re int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}
[HAOI2008]圆上的整点(数论)的更多相关文章
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
随机推荐
- jmeter5.0生成html报告 快速入门
JMeter性能测试5.0时代之-多维度的图形化HTML报告 快速入门 1.确认基本配置 在jmeter.properties或者user.properties确认如下配置项: jmeter.save ...
- jQuery EasyUI布局容器layout实例精讲
这个布局容器,有五个区域:北.南.东.西和中心. 他中心地区面板是必需的,但是边缘地区面板是可选的.每一个边缘地区面板可以缩放的拖动其边境, 他们也可以通过点击其收缩触发.布局可以嵌套,从而用户可以建 ...
- 老男孩python学习自修第六天【pycharm的使用】
1.在工程右键可选新建文件夹,包盒python文件 文件夹和包的区别在于,包包含一个空的__init__.py文件,而文件夹没有 2.pycharm的断点调试 点击Debug表示进入调试状态 点击Re ...
- linux通过命令行查看MySQL编码并修改-简洁版方法
云服务器环境:CentOS 7.4 因为服务器配置较低,故使用MySQL5.5 未进行设置前 1.查看字符编码: mysql> show variables like '%character%' ...
- Armstrong公理
从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则,这些规则常被称作“Armstrong 公理”. 设U 是关系模式R 的属性集,F 是R 上成立的只涉及U 中属性的函数依赖集. ...
- vue 使用技巧总结 19.01
组件中箭头函数的使用 不要使用箭头来定义任意生命周期钩子函数: 不要使用箭头来定义一个 methods 函数: 不要使用箭头来定义 computed 里的函数: 不要使用箭头定义 watch 里的函数 ...
- How to mount HFS EFI on macOS
mount_hfs /dev/disk0s1 /volumes/efi
- captive portal
刷好lineageos后默认浏览器无法上网,实际上并不是没有连上网,而是captive portal即网关设置错误,设置一下即可上网. adb shell "settings put glo ...
- SharePoint Server 2016 - Configure Office Online Server
Step 1: Create the binding between SharePoint 2016 and Office Web Apps Server To get started, open ...
- Zero to Build: Create new Xamarin apps in minutes with AppMap
Creating a new Xamarin.Forms app can be an intimidating task, especially if you add in content pages ...