[HAOI2008]圆上的整点(数论)
题目的所求可以转化为:
\(y^2=r^2-x^2\)(其中r,x,y均为整数)
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为整数)
不妨设\((r-x)=d*u\)-------① \((r+x)=d*v\)-------②(其中\(gcd(u,v)=1\))
则有\(y^2=d^2*u*v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)
则有\(y^2=d^2*s^2*v^2\),即\(y=d*s*v\)
②-①得\(x=\frac{ t^2-s^2 }{2}*d\)
②+①得\(2*r=(t^2+s^2)*d\)
然后枚举\(2*r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(s,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)
最后的答案为\((ans+1)*4\),(\(+1\)是因为坐标轴上有一点,\(*4\)是因为4个象限)
注意:小心乘法运算时爆longlong
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
il int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
il void work(int d)
{
for(re int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(re int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}
[HAOI2008]圆上的整点(数论)的更多相关文章
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
随机推荐
- js 通过url获取里面的参数值
场景描述:当我们从一个页面要带有一两个值跳转到另一个页面,另一个页面要使用这些参数的时候,我们就需要通过js获取这些参数啦. 先贴上代码: function getQueryString(name) ...
- Jquery ajax传递xml方式在ie8下兼容问题
主要问题就是ie8把xml格式在打开的时候转换成了string,我们只用把其转换回xml就可以了. $.ajax({ type:’GET’, url:’list.php?pagenow=’+count ...
- C# Note11:如何优雅地退出WPF应用程序
前言 I should know how I am supposed to exit my application when the user clicks on the Exit menu item ...
- Junit概述
Junit -> java unit.也就是说Junit是xunit家族中的一员. unit <- unit test case,即单元测试用例. Junit = java uni ...
- springMVC中@RequestParam和@RequestBody的作用
@RequestParam和@RequestBody是什么区别,估计很多人还是不太清楚, 因为一般用@ RequestParam就足够传入参数了,要说他们区别,就需要知道contentType是什么? ...
- sql 用户相关命令
查看所有用户 select distinct concat(user, '@', host,';') as userList from mysql.user; select #查找 distinct ...
- SpringBoot之显示本地图片范例
controller // 扫描指定目录下的图片进行展示 @RequestMapping("/showPics") public ModelAndView showPics(Mod ...
- Nginx grpc反向代理
L111 首先Grpc 默认编译进Nginx 但是依赖http_v2模块 需要编译进nginx 具体指令可以参考Nginx http 反向代理 指令都类似 分布式反向代理 server { serve ...
- Qt 获取屏幕信息
void GetScreenInfo() { QDesktopWidget* desktopWidget = QApplication::desktop(); //获取可用桌面大小 QRect des ...
- 上传第三方jar包至maven私服,以geotools为例
上传jar包(模块打包方式为jar) mvn deploy:deploy-file -DgroupId=org.geotools -DartifactId=gt-api -Dversion=10.3 ...