[HAOI2008]圆上的整点(数论)
题目的所求可以转化为:
\(y^2=r^2-x^2\)(其中r,x,y均为整数)
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为整数)
不妨设\((r-x)=d*u\)-------① \((r+x)=d*v\)-------②(其中\(gcd(u,v)=1\))
则有\(y^2=d^2*u*v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)
则有\(y^2=d^2*s^2*v^2\),即\(y=d*s*v\)
②-①得\(x=\frac{ t^2-s^2 }{2}*d\)
②+①得\(2*r=(t^2+s^2)*d\)
然后枚举\(2*r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(s,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)
最后的答案为\((ans+1)*4\),(\(+1\)是因为坐标轴上有一点,\(*4\)是因为4个象限)
注意:小心乘法运算时爆longlong
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
il int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
il void work(int d)
{
for(re int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(re int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}
[HAOI2008]圆上的整点(数论)的更多相关文章
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
随机推荐
- laravel自定义门面
https://learnku.com/articles/19195 关于laravel门面和服务提供者使用的一点见解,门面之词,不足之处,还请多多指教. 在laravel中,我们可能需要用到自己 ...
- Java 异常处理的误区和经验总结
Java 异常处理的误区和经验总结 1 本文着重介绍了 Java 异常选择和使用中的一些误区,希望各位读者能够熟练掌握异常处理的一些注意点和原则,注意总结和归纳.只有处理好了异常,才能提升开发人员 ...
- Linux(CentOS7)命令学习摘要
1. 修改机器名 hostnamectl set-hostname newname 2. hosts主机存放位置 /etc/hosts 3. 安装tigervncserver, 然后使用vncserv ...
- picker-view 组件 的value失效问题
首先检查是不是漏了绑定关系 组件内 组件引用 如过还不行就用下面的方法,顺序问题 在给暂时列表赋值之后再对value赋值
- MySQL 字段内容区分大小写
数据由Oracle 迁入MySQL ,由于之前Oracle区分大小写,MySQL的配置使用了默认配置,导致一些数据导入失败,有的唯一键报错,冲突. 将测试过程记录在下面. 数据库版本:MySQL 5. ...
- Python2.7从入门到精通
快速入门 1.程序输出print语句 (1)使用print语句可查看对象的值:在交互式解释器使用对象本身则输出此对象的字符串表示: (2)使用print语句调用str()显示对象:在交互式解释器使用对 ...
- yii2的下载安装
1.直接使用归档文件安装yii2的高级模板: 从 yiiframework.com 下载归档文件. 下载yii2的高级模板的压缩文件, 将yii-advanced-app-2.0.12文件夹复制到项目 ...
- DELPHI中MDI子窗口的关闭和打开
DELPHI中MDI子窗口的关闭 和打开 Delphi中MDI子窗口的关闭方式默认为缩小而不是关闭,所以当你单击子窗口右上角的关闭按钮时会 发觉该子窗口只是最小化,而不是你预期的那样被 ...
- DELPHI中MDI子窗口的关闭 和打开
Delphi中MDI子窗口的关闭方式默认为缩小而不是关闭,所以当你单击子窗口右上角的关闭按钮时会发觉该子窗口只是最小化,而不是你预期的那样被关闭.解决办法是在子窗口的OnClose事件处理过程中加入如 ...
- flask保存 文件到本地
本篇队长介绍一下如何 把前端上传的文件保存 到 后端flask项目目录 首先讲一下上传.保存文件的思路: 第一步:前端通过post请求方式提交上传的文件 <input id="file ...