题目的所求可以转化为:

\(y^2=r^2-x^2\)(其中r,x,y均为整数)

即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为整数)

不妨设\((r-x)=d*u\)-------① \((r+x)=d*v\)-------②(其中\(gcd(u,v)=1\))

则有\(y^2=d^2*u*v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)

则有\(y^2=d^2*s^2*v^2\),即\(y=d*s*v\)

②-①得\(x=\frac{ t^2-s^2 }{2}*d\)

②+①得\(2*r=(t^2+s^2)*d\)

然后枚举\(2*r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(s,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)

最后的答案为\((ans+1)*4\),(\(+1\)是因为坐标轴上有一点,\(*4\)是因为4个象限)

注意:小心乘法运算时爆longlong

代码如下:

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
il int read()
{
re int x=0,f=1;re char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
il int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
il void work(int d)
{
for(re int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(re int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}

[HAOI2008]圆上的整点(数论)的更多相关文章

  1. 【bzoj1041】[HAOI2008]圆上的整点 数论

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...

  2. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  3. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  4. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  5. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  6. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  7. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  8. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  9. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  10. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

随机推荐

  1. MySQL 性能调优之索引

    原文:http://bbs.landingbj.com/t-0-245452-1.html 对于索引的优化,我们第一需要找到合适的字段,第二创建索引找到合适的顺序,第三要找到合适的比例,第四是要做合适 ...

  2. js 翻牌活动效果

    直接上代码 html: <div class="index_main"> <ul class="index_card"> <li ...

  3. React Native之倒计时组件的实现(ios android)

    React Native之倒计时组件的实现(ios android) 一,需求分析 1,app需实现类似于淘宝的活动倒计时,并在倒计时结束时,活动也结束. 2,实现订单倒计时,并在倒计时结束时,订单关 ...

  4. C#的修饰符

    C#的修饰符 废话少说,直接上总结: 一.在命名空间下: 类:默认修饰符为internal 接口:默认的修饰符为internal 结构体:默认的修饰符为internal 枚举:默认的修饰符为inter ...

  5. js删除数组元素

    一.清空数组 var ary = [1,2,3,4]; ary.splice(0,ary.length);//清空数组 console.log(ary); // 输出 [],空数组,即被清空了 二.删 ...

  6. 网站滚动n个像素后,头部固定

    //固顶 $(window).scroll(function() { var top = $(window).scrollTop(); if(top>=1200){ $(".x_men ...

  7. python设计模式第七天【建造者模式】

    1. 建造者模式UML图 2.应用场景 (1)专门创建具有符合属性的对象 3.代码实现 #!/usr/bin/env python #! _*_ coding: UTF-8 _*_ from abc ...

  8. jdbc一点小笔记

    JDBC的常用接口的步骤, 1使用Driver或者Class.forName()进行注册驱动: 2使用DriverManager进行获取数据库的链接.使用Connection获取语句对象.使用语句对象 ...

  9. Spring Boot 构建电商基础秒杀项目 (三) 通用的返回对象 & 异常处理

    SpringBoot构建电商基础秒杀项目 学习笔记 定义通用的返回对象 public class CommonReturnType { // success, fail private String ...

  10. Jenkins+PowerShell持续集成环境搭建(四)常用PowerShell命令

    0. 修改执行策略 Jenkins执行PowerShell脚本,需要修改其执行策略.以管理员身份运行PowerShell,执行以下脚本: Set-ExecutionPolicy Unrestricte ...