【CF891C】Envy(最小生成树)
【CF891C】Envy(最小生成树)
题面
题解
考虑\(MST\)的构建过程,对于所有权值相同的边一起考虑。
显然最终他们连出来的结果是固定的。
把连边改为把联通块联通,这样子只需要检查询问中的权值相同的边连接这些联通块是否会成环。
并查集解决即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 500500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int u,v,w,id;}e[MAX],p[MAX];
bool operator<(Line a,Line b){return a.w<b.w;}
bool cmp(Line a,Line b){return a.id<b.id;}
int n,m,Q,K,f[MAX];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
bool Work()
{
K=read();for(int i=1;i<=K;++i)p[i]=e[read()];
sort(&p[1],&p[K+1]);
for(int i=1,j=1;i<=K;i=j=j+1)
{
while(j<K&&p[j+1].w==p[i].w)++j;
for(int k=i;k<=j;++k)f[p[k].u]=p[k].u,f[p[k].v]=p[k].v;
for(int k=i;k<=j;++k)
{
int u=getf(p[k].u),v=getf(p[k].v);
if(u==v)return false;
f[getf(u)]=getf(v);
}
}
return true;
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)e[i].u=read(),e[i].v=read(),e[i].w=read(),e[i].id=i;
for(int i=1;i<=n;++i)f[i]=i;
sort(&e[1],&e[m+1]);
for(int i=1,j=1;i<=m;i=j=j+1)
{
while(j<m&&e[j+1].w==e[i].w)++j;
for(int k=i;k<=j;++k)e[k].u=getf(e[k].u),e[k].v=getf(e[k].v);
for(int k=i;k<=j;++k)
{
int u=getf(e[k].u),v=getf(e[k].v);
if(u==v)continue;f[getf(u)]=getf(v);
}
}
sort(&e[1],&e[m+1],cmp);
Q=read();while(Q--)puts(Work()?"YES":"NO");
return 0;
}
【CF891C】Envy(最小生成树)的更多相关文章
- CF891C Envy 最小生成树/虚树
正解:最小生成树/虚树 解题报告: 传送门! sd如我就只想到了最暴力的想法,一点儿优化都麻油想到,,,真的菜到爆炸了QAQ 然后就分别港下两个正解QAQ 法一,最小生成树 这个主要是要想到关于最小生 ...
- CF891C Envy【最小生成树】
题目链接 我们知道,根据Kruskal的贪心,对于最小生成树,每一种权值的边数是一样的,而且如果将\(\leq x\)的边做最小生成树,合法方案的联通性是一样的.所以我们可以对于所有边分开考虑. 对于 ...
- CF891C Envy
题面 题解 首先要知道两个性质: 对于任意权值,最小生成树上该权值的边数是相同的. 对于任意一个最小生成树,当加完所有权值小于一个任意值的边之后,当前图的连通性是一样的. 于是我们按照权值分开处理,对 ...
- CF891C Envy(离线/在线+可撤销并查集/并查集/LCT)
前置知识 最小生成树及证明 做法 每个不同权值没影响,仅需判断该次询问每种权值是否在"小于该权值的所有边加完"之后,可以全部加进来 离线:询问的所有边全堆到一起,按权值排序,然后同 ...
- CF892E Envy[最小生成树]
题意:有一张 $n$ 个点$ m $条边的连通图.有$Q$ 次询问.每次询问给出 $k[i]$ 条边,问这些边能否同时出现在一棵最小生成树上.$n,m,Q,\sum k\le 500000$. 这题利 ...
- [CF891C] Envy - Kruskal,并查集
给出一个 n 个点 m条边的无向图,每条边有边权,共 Q次询问,每次给出 \(k\)条边,问这些边能否同时在一棵最小生成树上. Solution 所有最小生成树中某权值的边的数量是一定的 加完小于某权 ...
- 题解 [CF891C] Envy
题面 解析 首先根据Kruskal算法, 我们可以知道, 在加入权值为\(w\)的边时, 权值小于\(w\)的边都已经加进树里了(除了连成环的). 所以,我们可以保存一下每条边的端点在加入生成树之前的 ...
- 【题解】CF891CEnvy
[题解] CF891C Envy 很好玩的一道题.尽管不难,但是调了很久QAQ 考虑克鲁斯卡尔最小生成树的算法,可以发现这些最小树生成的性质: 当生成树所有边的权值都\(\le\)某个$ w$的时刻, ...
- 【CF891C】Envy 离线+最小生成树
[CF891C]Envy 题意:给你一个图,边有边权,每次询问给你一堆边,问你是否存在一个原图的最小生成树包含给出的所有边.n,m,q<=100000 题解:思路很好的题. 首先有一个非常重要的 ...
随机推荐
- PS提亮户外儿童照
(@摄影师延延)作品 调整完的图. 原图. 再看原图.好吧,这张照片明显欠曝了,蘑菇酱的小脸黑黑的.但是构图啊蘑菇酱的神情啊都不错捏.好在蘑菇妈是用raw格式拍,即刻Lightroom调整无压力. 1 ...
- openstack-KVM-存储配置
一.块存储设备 1.存储设备类型 IDE SCSI 软盘 U盘 virtio磁盘(KVM使用类型) 2.查看存储设备 lspci | grep IDE lspci | grep SCSI lspci ...
- 软件工程(FZU2015) 赛季得分榜,第10回合(alpha冲刺)
SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...
- echarts图片保存
一.js: function updateChart(versionList,rateList) { option = { title: { text: '拖动频次' }, tooltip : { t ...
- shell脚本--php执行普通shell命令
这里只演示一些普通的shell命令,一些需要root用户权限执行的命令,请参考:php以root权限执行shell命令 php执行shell命令,可以使用下面几个函数: string system ( ...
- 敏捷与CMM的恩怨
模式不同,一种是灵活,一种是严肃.
- MySQL查询优化注意下面的四个细节
原文:http://bbs.landingbj.com/t-0-244231-1.html 在任何一个数据库中,查询优化都是不可避免的一个话题.对于数据库工程师来说,优化工作是最有挑战性的工作.MyS ...
- Javascript与C#对变量的处理方式
先来看一下Javascript的情况(下面所说的基本类型和简单类型是一个意思): Javascript中变量会存在两种情况,一种是基本类型的,一共有五种,有null.Bollean.undefin ...
- yield send 的一些使用细节
其实日常中我们使用最多的是 return 很少会使用到 yield 去创造一个生成器.一般就是算算算 算完之后用 return 返回一把. 但是有些情况下 比如需要节约内存不需要一把全部返回,每次使用 ...
- Chrome & QR Code Reader
Chrome & QR Code Reader Allows to generate a QR Code for the current page and scan a QR Code usi ...