【CF891C】Envy(最小生成树)

题面

Codeforces

洛谷

题解

考虑\(MST\)的构建过程,对于所有权值相同的边一起考虑。

显然最终他们连出来的结果是固定的。

把连边改为把联通块联通,这样子只需要检查询问中的权值相同的边连接这些联通块是否会成环。

并查集解决即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 500500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int u,v,w,id;}e[MAX],p[MAX];
bool operator<(Line a,Line b){return a.w<b.w;}
bool cmp(Line a,Line b){return a.id<b.id;}
int n,m,Q,K,f[MAX];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
bool Work()
{
K=read();for(int i=1;i<=K;++i)p[i]=e[read()];
sort(&p[1],&p[K+1]);
for(int i=1,j=1;i<=K;i=j=j+1)
{
while(j<K&&p[j+1].w==p[i].w)++j;
for(int k=i;k<=j;++k)f[p[k].u]=p[k].u,f[p[k].v]=p[k].v;
for(int k=i;k<=j;++k)
{
int u=getf(p[k].u),v=getf(p[k].v);
if(u==v)return false;
f[getf(u)]=getf(v);
}
}
return true;
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)e[i].u=read(),e[i].v=read(),e[i].w=read(),e[i].id=i;
for(int i=1;i<=n;++i)f[i]=i;
sort(&e[1],&e[m+1]);
for(int i=1,j=1;i<=m;i=j=j+1)
{
while(j<m&&e[j+1].w==e[i].w)++j;
for(int k=i;k<=j;++k)e[k].u=getf(e[k].u),e[k].v=getf(e[k].v);
for(int k=i;k<=j;++k)
{
int u=getf(e[k].u),v=getf(e[k].v);
if(u==v)continue;f[getf(u)]=getf(v);
}
}
sort(&e[1],&e[m+1],cmp);
Q=read();while(Q--)puts(Work()?"YES":"NO");
return 0;
}

【CF891C】Envy(最小生成树)的更多相关文章

  1. CF891C Envy 最小生成树/虚树

    正解:最小生成树/虚树 解题报告: 传送门! sd如我就只想到了最暴力的想法,一点儿优化都麻油想到,,,真的菜到爆炸了QAQ 然后就分别港下两个正解QAQ 法一,最小生成树 这个主要是要想到关于最小生 ...

  2. CF891C Envy【最小生成树】

    题目链接 我们知道,根据Kruskal的贪心,对于最小生成树,每一种权值的边数是一样的,而且如果将\(\leq x\)的边做最小生成树,合法方案的联通性是一样的.所以我们可以对于所有边分开考虑. 对于 ...

  3. CF891C Envy

    题面 题解 首先要知道两个性质: 对于任意权值,最小生成树上该权值的边数是相同的. 对于任意一个最小生成树,当加完所有权值小于一个任意值的边之后,当前图的连通性是一样的. 于是我们按照权值分开处理,对 ...

  4. CF891C Envy(离线/在线+可撤销并查集/并查集/LCT)

    前置知识 最小生成树及证明 做法 每个不同权值没影响,仅需判断该次询问每种权值是否在"小于该权值的所有边加完"之后,可以全部加进来 离线:询问的所有边全堆到一起,按权值排序,然后同 ...

  5. CF892E Envy[最小生成树]

    题意:有一张 $n$ 个点$ m $条边的连通图.有$Q$ 次询问.每次询问给出 $k[i]$ 条边,问这些边能否同时出现在一棵最小生成树上.$n,m,Q,\sum k\le 500000$. 这题利 ...

  6. [CF891C] Envy - Kruskal,并查集

    给出一个 n 个点 m条边的无向图,每条边有边权,共 Q次询问,每次给出 \(k\)条边,问这些边能否同时在一棵最小生成树上. Solution 所有最小生成树中某权值的边的数量是一定的 加完小于某权 ...

  7. 题解 [CF891C] Envy

    题面 解析 首先根据Kruskal算法, 我们可以知道, 在加入权值为\(w\)的边时, 权值小于\(w\)的边都已经加进树里了(除了连成环的). 所以,我们可以保存一下每条边的端点在加入生成树之前的 ...

  8. 【题解】CF891CEnvy

    [题解] CF891C Envy 很好玩的一道题.尽管不难,但是调了很久QAQ 考虑克鲁斯卡尔最小生成树的算法,可以发现这些最小树生成的性质: 当生成树所有边的权值都\(\le\)某个$ w$的时刻, ...

  9. 【CF891C】Envy 离线+最小生成树

    [CF891C]Envy 题意:给你一个图,边有边权,每次询问给你一堆边,问你是否存在一个原图的最小生成树包含给出的所有边.n,m,q<=100000 题解:思路很好的题. 首先有一个非常重要的 ...

随机推荐

  1. 在IDEA中配置Spring的XML装配

    不考虑混合模式的话,Spring有三类装配Bean的方法,自动装配和Java代码装配都会很容易上手,但在弄XML装配时遇到了问题,这与IDEA环境有关. 装配时需要在源码中配置XML文件的位置,我看别 ...

  2. python_format格式化输出、while else、逻辑运算符、编码初识

    1.格式化输出 .%d  %s  格式化输出:% 占位符,d 表示替换整型数,s表示要替换字符串. name = input('请输入名字:') age = input('请输入年龄:') sex = ...

  3. 福州大学软件工程1816 | W班 第2次作业成绩排名

    作业链接 词频统计基础功能 评分细则 本次个人项目分数由两部分组成(博客分满分40分+程序得分满分60分) 博客评分规则 在文章开头给出你们Fork仓库的Github项目地址.(1') 在开始实现程序 ...

  4. 关于Fatal error: Paletter image not supported by webp 报错

    报错提示 Fatal error: Paletter image not supported by webp 原因是由于图片被非法编辑过(相对PHP来说)造成, 有可能是某些编辑图片的软件的格式与PH ...

  5. jQuery EasyUI 折叠面板accordion的使用实例

    1.对折叠面板区域 div 设置 class=”easyui-accordion” 2.在区域添加多个 div, 每个 div 就是一个面板 (每个面板一定要设置 title 属性). 3.设置面板属 ...

  6. hive权限配置

    基于CDH5.x的Hive权限配置 1.打开权限控制,默认是没有限制的 set hive.security.authorization.enabled=true; 2.配置默认权限 hive.secu ...

  7. 关于js的书写

    <li> <label>工号:</label> <input id="uidarr" type='text' onclick=" ...

  8. Plugin/Preset files are not allowed to export objects,webpack报错/babel报错的解决方法

    1.为什么会报错 ? 这里抱着错误是因为 babel 的版本冲突. 多是因为你的 babel 依赖包不兼容. 可以查看你的 package.json 的依赖列表 即有 babel 7.0 版本的( @ ...

  9. js一元运算符

    否运算符(按位非):~    加1取反 console.log(~-); console.log(~-); console.log(~); //-1 void():计算表达式,但是不返回值(仅仅是不返 ...

  10. springboot+jpa+mysql+redis+swagger整合步骤

    springboot+jpa+MySQL+swagger框架搭建好之上再整合redis: 在电脑上先安装redis: 一.在pom.xml中引入redis 二.在application.yml里配置r ...