(2017浙江省数学竞赛)

设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$
证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列.


分析:若$a_1\in Q$由$|a_{n+1}-2a_n|=2$知道$a_n\in Q$. 
设$a_n=\dfrac{q}{p},(p,q)=1$则$a_{n+1}=2a_n\pm2=\dfrac{2q\pm2p}{p}$故$a_n,a_{n+1}$ 在不约分的情况下分母相同.
设$a_1=\dfrac{b_1}{p},(b_1,p)=1$则$a_n=\dfrac{b_n}{p},b_n\in Z$,由已知$|a_n|\le 2$故$-2|p|\le b_n\le 2|p|$,故$a_n$的个数至多$4|p|+1$个,故存在整数$k<l$使得$a_k=a_l$.
故$\{a_n\}$从第$k$项起是周期数列,周期为$T=l-k$

注:这里主要考察一个周期数列的定理:

值域是有限数集的递推数列从某项起是周期数列.

证明:设$a_{n+r}=f(a_{n+r-1},a_{n+r-2},\cdots,a_n),n\in N^*$ 且$\{a_n\}$的值域为$D=\{b_1,b_2,\cdots,b_M\}$
构造数组$(a_1,a_2,\cdots,a_r),(a_2,a_3,\cdots,a_{r+1}),\cdots,(a_n,a_{n+1},\cdots,a_{n+r-1}),\cdots$
显然这些数组至多$M^r$个,由抽屉原理,$M^r+1$个中至少有两个是相等的,
不妨设$(a_N,a_{N+1},\cdots,a_{N+r-1})=(a_{N+T},a_{N+1+T},\cdots,a_{N+r-1+T})$,
从而$a_{N+k+T}=a_{N+k},k=0,1,2,\cdots r-1$.
下面用数学归纳法证明:$n\ge N$时$a_{n+T}=a_n$恒成立
(1)当$n=N,N+1,\cdots N+r-1$时,由上述论述$a_n=a_{n+T}$成立
(2)假设当$n\le k(k\ge N+r-1)$时$a_{n+T}=a_n$成立,
那么$n=k+1$时,$a_{n+1+T}=f(a_{n+T},a_{n-1+T},\cdots,a_{n-r+1+T})=f(a_n,a_{n-1},\cdots,a_{n+r-1})=a_{n+1}$
综上由(1)(2)知对任意$n\ge N,a_{n+T}=a_n$成立.

MT【307】周期数列的更多相关文章

  1. Fibonacci数列对任何数取模都是一个周期数列

    题目是要求出斐波那契数列n项对一个正整数取模,那么可以把斐波那契数列取模后得到的数列周期求出来. 比如下面一个题目:求出f[n]的后4位,先求出数列对10000取模的周期,然后再查找即可. #incl ...

  2. 常见排序的JAVA实现和性能测试

    五种常见的排序算法实现 算法描述 1.插入排序 从第一个元素开始,该元素可以认为已经被排序 取出下一个元素,在已经排序的元素序列中从后向前扫描 如果该元素(已排序)大于新元素,将该元素移到下一位置 重 ...

  3. na 残

    题目描述: 对于斐波那锲数列f(0)=0,f(1)=1,....求f(f(n)的值 0<=n<=10^100 给出T组数据,每行一个n 输出n行 f(f(n)) 样例输入: 4 0 1 2 ...

  4. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  5. MT【312】特征根法求数列通项

    (2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是(      )A ...

  6. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  7. MT【104】高斯函数找周期

    分析:$t(n)=n-[\frac{n}{2}]-[\frac{n}{3}]-[\frac{n}{6}]$的周期为6,故 $\sum\limits_{n=1}^{2014}(n-t(n))=\sum\ ...

  8. MT【150】源自斐波那契数列

    (清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...

  9. MT【148】凸数列

    (2018浙江省赛13题) 设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\lim ...

随机推荐

  1. elk之查询方式(4种)

    es 在查询时, 可以指定搜索类型为下面四种: QUERY_THEN_FETCH QUERY_AND_FEATCH DFS_QUERY_THEN_FEATCH DFS_QUERY_AND_FEATCH ...

  2. How To: Capture Android & iOS Traffic with Fiddler

    How To: Capture iOS Traffic with Fiddlerhttps://www.telerik.com/blogs/how-to-capture-ios-traffic-wit ...

  3. Memcached 集群架构与memcached-session-manager

    Memcached 集群架构方面的问题_知识库_博客园https://kb.cnblogs.com/page/69074/ memcached-session-manager配置 - 学习中间件调优管 ...

  4. ntpd、ntpdate、hwclock的区别

    hwclock --systohc 使用ntpdate更新系统时间 - 潜龙勿用 - CSDN博客https://blog.csdn.net/suer0101/article/details/7868 ...

  5. [转帖]关于CP936

    来源: 知乎:https://www.zhihu.com/question/35609295/answer/63780022 CP936和UTF-8本身和Python是毫无关联的. CP936其实就是 ...

  6. 1065. 我的日程安排表 I

    描述 实现MyCalendar类来存储您的活动. 如果新添加的活动没有重复,则可以添加. 你的类将有方法book(int start,int end). 这代表左闭右开的间隔[start,end)有了 ...

  7. Spring boot+ logback环境下,日志存放路径未定义的问题

    日志路径未定义 环境:Spring boot + logback 配置文件: <configuration> <springProfile name="dev"& ...

  8. 2017年前小纪(有关http的一些缓存理论知识)

    position的top和bottom的区别:前者基准点定在top,后者基准点定在bottom. for-in 遍历属性的顺序不确定 手机端,line-height对光标大小非常有影响 有些css3属 ...

  9. Python 基础知识----流程控制

    判断语句 循环语句 嵌套

  10. 微信小程序wxml無法實現頁面跳轉的問題

    wxml的 navigator的url設置后無法跳轉? 檢查要跳轉的頁面是否是在APP.json的tabBar里註冊過,如果是tabBar頁面是不能用wx.navigateTo和wx.Redirect ...