(2017浙江省数学竞赛)

设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$
证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列.


分析:若$a_1\in Q$由$|a_{n+1}-2a_n|=2$知道$a_n\in Q$. 
设$a_n=\dfrac{q}{p},(p,q)=1$则$a_{n+1}=2a_n\pm2=\dfrac{2q\pm2p}{p}$故$a_n,a_{n+1}$ 在不约分的情况下分母相同.
设$a_1=\dfrac{b_1}{p},(b_1,p)=1$则$a_n=\dfrac{b_n}{p},b_n\in Z$,由已知$|a_n|\le 2$故$-2|p|\le b_n\le 2|p|$,故$a_n$的个数至多$4|p|+1$个,故存在整数$k<l$使得$a_k=a_l$.
故$\{a_n\}$从第$k$项起是周期数列,周期为$T=l-k$

注:这里主要考察一个周期数列的定理:

值域是有限数集的递推数列从某项起是周期数列.

证明:设$a_{n+r}=f(a_{n+r-1},a_{n+r-2},\cdots,a_n),n\in N^*$ 且$\{a_n\}$的值域为$D=\{b_1,b_2,\cdots,b_M\}$
构造数组$(a_1,a_2,\cdots,a_r),(a_2,a_3,\cdots,a_{r+1}),\cdots,(a_n,a_{n+1},\cdots,a_{n+r-1}),\cdots$
显然这些数组至多$M^r$个,由抽屉原理,$M^r+1$个中至少有两个是相等的,
不妨设$(a_N,a_{N+1},\cdots,a_{N+r-1})=(a_{N+T},a_{N+1+T},\cdots,a_{N+r-1+T})$,
从而$a_{N+k+T}=a_{N+k},k=0,1,2,\cdots r-1$.
下面用数学归纳法证明:$n\ge N$时$a_{n+T}=a_n$恒成立
(1)当$n=N,N+1,\cdots N+r-1$时,由上述论述$a_n=a_{n+T}$成立
(2)假设当$n\le k(k\ge N+r-1)$时$a_{n+T}=a_n$成立,
那么$n=k+1$时,$a_{n+1+T}=f(a_{n+T},a_{n-1+T},\cdots,a_{n-r+1+T})=f(a_n,a_{n-1},\cdots,a_{n+r-1})=a_{n+1}$
综上由(1)(2)知对任意$n\ge N,a_{n+T}=a_n$成立.

MT【307】周期数列的更多相关文章

  1. Fibonacci数列对任何数取模都是一个周期数列

    题目是要求出斐波那契数列n项对一个正整数取模,那么可以把斐波那契数列取模后得到的数列周期求出来. 比如下面一个题目:求出f[n]的后4位,先求出数列对10000取模的周期,然后再查找即可. #incl ...

  2. 常见排序的JAVA实现和性能测试

    五种常见的排序算法实现 算法描述 1.插入排序 从第一个元素开始,该元素可以认为已经被排序 取出下一个元素,在已经排序的元素序列中从后向前扫描 如果该元素(已排序)大于新元素,将该元素移到下一位置 重 ...

  3. na 残

    题目描述: 对于斐波那锲数列f(0)=0,f(1)=1,....求f(f(n)的值 0<=n<=10^100 给出T组数据,每行一个n 输出n行 f(f(n)) 样例输入: 4 0 1 2 ...

  4. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  5. MT【312】特征根法求数列通项

    (2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是(      )A ...

  6. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  7. MT【104】高斯函数找周期

    分析:$t(n)=n-[\frac{n}{2}]-[\frac{n}{3}]-[\frac{n}{6}]$的周期为6,故 $\sum\limits_{n=1}^{2014}(n-t(n))=\sum\ ...

  8. MT【150】源自斐波那契数列

    (清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...

  9. MT【148】凸数列

    (2018浙江省赛13题) 设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\lim ...

随机推荐

  1. Python入门-三级菜单

    作业题目: 三级菜单 作业需求: menu = { '北京':{ '海淀':{ '五道口':{ 'soho':{}, '网易':{}, 'google':{} }, '中关村':{ '爱奇艺':{}, ...

  2. p151开映射札记

    1. 如何理解这句话? 2.连续有什么用? 3.为什么区间包含,经过算子T还是包含? 谢谢 谢谢学长 我懂了  1.2.     3有点儿模糊 1.连续等价于开集原像是开集,而可逆算子的逆的原像就是的 ...

  3. MySQL分页时统计总记录行数并使用limit返回固定数目的记录

    需求很简单:假设有一个user表,表中实际上有10000条数据,但是我不知道有多少条,我要从数据库中每次取20条数据显示,那么怎么完成呢? 方案一: 首先执行一个 select count(*) as ...

  4. Bootstrap 字体图标(Glyphicons)

    http://www.runoob.com/bootstrap/bootstrap-glyphicons.html 什么是字体图标? 字体图标是在 Web 项目中使用的图标字体.虽然,Glyphico ...

  5. Django的分页和中间件

    一.分页 Django的分页器(paginator) view.py from django.shortcuts import render,HttpResponse # Create your vi ...

  6. 1、通过eureka创建注册中心

    第一个demo(用户需要调用电影服务) 1.创建项目 new starter project 勾选上Eureka Server 2.编写application.yml #配置端口 server: po ...

  7. websocket协议握手详解

    最近使用tornado做长链接想着怎么着也要试试websocket协议吧.所以说干就干. 首先要知道websocket是基于http协议的,为什么这么说?因为从协议来说,websocket是借用了一部 ...

  8. mysql对身份证号码进行脱敏处理

    select * from test 格式:INSERT(str,pos,len,newstr) 解释: str:查询的例 pos:起始位置 len:从起始位置开始被后面newstr替换的长度 new ...

  9. 循环神经网络RNN及LSTM

    一.循环神经网络RNN RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239 RNN中为什么要采用tanh而不是ReLu作为激活函数?  htt ...

  10. C#使用WebClient下载文件到本地目录

    C#使用WebClient下载文件到本地目录. 1.配置本地目录路径 <appSettings> <!--文件下载目录--> <add key="Downloa ...