1        $$\beex \bea E\mbox{ 是开集}&\lra E^o=E\\        &\lra \forall\ P_0\in E,\ \exists\ U(P_0)\subset E.        \eea        \eeex$$

2        $$\beex \bea E\mbox{ 是闭集}&\lra    E'\subset E\\    &\lra E^-=E\\    &\lra \mbox{若 }E\ni P_n\to P_0,\mbox{ 则 }P_0\in E.        \eea        \eeex$$

3 对 $E\subset \bbR^n$, $E^o$ 是开集, $E',E^-$ 是闭集.

4 (开集、闭集的对偶性):        $$\bex        E\mbox{ 是开 (闭) 集}\lra E^c\mbox{ 是闭 (开) 集}.        \eex$$        证明: 设 $E$ 是开集, 往证 $E^c$ 是闭集: $E^{c-}=E^{oc}=E^c$.

设 $E$ 是闭集, 往证 $E^c$ 是开集: $E^{co}=E^{-c}=E^c$.

5 任意多个开集之并是开集, 有限多个开集之交是开集;

任意多个闭集之交是闭集, 有限多个闭集之并是闭集.

证明: 设 $\sed{E_\lambda}_{\lambda\in \vLa}$ 是开集族, 往证 $\dps{\cup_{\lambda\in \vLa}E_\lambda}$ 是开集:        $$\beex \bea P_0\in \cup_{\lambda\in \vLa}E_\lambda        &\ra \exists\ \lambda_0\in \vLa,\st P_0\in E_{\lambda_0}\\        &\ra        \exists\ U(P_0)\subset E_{\lambda_0}\subset \cup_{\lambda\in \vLa}E_\lambda.        \eea        \eeex$$

设 $\sed{E_i}_{i=1}^n$ 是开集, 往证 $\dps{\cap_{i=1}^m E_i}$ 是开集:        $$\beex \bea P_0\in \cap_{i=1}^m E_i        &\ra \forall\ i,\ P_0\in E_i\\        &\ra \forall\ i,\ \exists\ U(P_0,\delta_i)\subset E_i\\        &\ra U(P_0,\delta)\subset \cap_{i=1}^m E_i\quad\sex{\delta=\min \delta_i}.        \eea        \eeex$$

另外两个直接是 De Morgan 公式的推论.

6 例:        $$\bex        \cap_{n=1}^\infty\sex{a-\frac{1}{n},b+\frac{1}{n}}=[a,b],\quad \cup_{n=1}^\infty\sez{a+\frac{1}{n},b-\frac{1}{n}}=(a,b).        \eex$$

7 (正规性) 设两闭集 $F_1,F_2$ 不交, 则存在开集 $O_1\supset F_1, O_2\supset F_2$, 使得

$O_1\cap O_2=\vno$.

8 思考: 两闭集 $F_1,F_2$ 不交, 能否推出 $d(F_1,F_2)=0$?

答案: 不能! 比如 $\bbR^2$ 中的两个闭集:    $$\bex    F_1=\sed{(x,0);x\in\bbR},\quad F_2=\sed{(x,e^x);x\in\bbR}.    \eex$$

9        $$\beex \bea E\mbox{ 是紧集}&\lra \sex{E\subset \cup_{\lambda\in \vLa}O_\lambda\ra E\subset \cup_{i=1}^m O_i}\\        &\lra E\mbox{ 是有界闭集}.        \eea        \eeex$$        证明: $\la$ Heine-Borel 有限覆盖定理.

$\ra$ $E$ 有界:        $$\bex        E\subset \cup_{P\in M}U(P,1)\ra         E\subset U(P_1,1)\cup\cdots\cup U(P_m,1).        \eex$$

$E$ 是闭集:        $$\beex \bea P_0\in E^c&\ra \forall\ P\in E,\ \delta_P=d(P,P_0)>0\\        &\ra E\subset \cup_{P\in M}U\sex{P,\frac{\delta_P}{2}}\\        &\ra E\subset U\sex{P_1,\frac{\delta_{P_1}}{2}}\cup        \cdots\cup U\sex{P_m,\frac{\delta_{P_m}}{2}}\\        &\ra U\sex{P,\delta}\subset M^c\quad\sex{\delta=\frac{1}{2}\min \delta_{P_i}}.        \eea        \eeex$$

10    $$\beex \bea E\mbox{ 是自密集 (dense-in-itself)}        &\lra E\subset E'\\        &\lra E\mbox{ 没有孤立点};        \eea        \eeex$$        $$\beex \bea E\mbox{ 是完备集 (complete set)}&\lra E=E'\\        &\lra E\mbox{ 是自密闭集}.        \eea        \eeex$$            (1) 例: $\vno$ 是自密集, 也是完备集;

在 $\bbR$ 中, $\bbQ$ 是自密集, $[a,b]$ 和 $\bbR$ 是完备集.

11 作业: Page 51, T 7.

[实变函数]2.3 开集 (open set), 闭集 (closed set), 完备集 (complete set)的更多相关文章

  1. Complete space 完备空间与柯西序列 巴拿赫空间与完备空间 完备空间与和希尔伯特空间 封闭closed与完备性complete

    http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/RKHS2013_slides1.pdf RKHS: a function space with a ...

  2. JS代码格式化和语法着色

    有时为了研究学习一些格式不规范的JS代码段,需要将代码段格式化一下,这样思路就会清晰多了,网上找到此款格式化的工具,将以下代码保存为html格式文件即可使用 <html> <head ...

  3. javascrpt 页面格式化页面

    下面这个页面,格式化javaScript <html> <head> <title>JS格式化工具 </title> <meta http-equ ...

  4. [转]ASP.NET MVC 5 List Editor with Bootstrap Modals

    本文转自:https://www.codeproject.com/articles/786085/asp-net-mvc-list-editor-with-bootstrap-modals With ...

  5. JS格式化工具(转)

    <html> <head> <title>JS格式化工具 </title> <meta http-equiv="content-type ...

  6. [源码解析] PyTorch 分布式之弹性训练(5)---Rendezvous 引擎

    [源码解析] PyTorch 分布式之弹性训练(5)---Rendezvous 引擎 目录 [源码解析] PyTorch 分布式之弹性训练(5)---Rendezvous 引擎 0x00 摘要 0x0 ...

  7. [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理

    1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...

  8. open ball、closed ball 与 open set、closed set(interior point,limit point)、dense set

    0. demo 在拓扑学上,open set(开集)是对实数轴(real line)上开区间(open interval)的拓展. 红色圆盘:{(x,y)|x2+y2<r2},蓝色圆圈:{(x, ...

  9. 实变函数(Real Analysis)

    针对实数函数的分析理论 首先引入集合和映射的概念 ------------------------------------- 集合交,并,差. 集合的势:有限集,无限集(可列,不可列) 再考虑实数点集 ...

随机推荐

  1. JS 索引数组、关联数组和静态数组、动态数组

    JS 索引数组.关联数组和静态数组.动态数组 数组分类: 1.从数组的下标分为索引数组.关联数组 var ary1 = [1,3,5,8]; //按索引去取数组元素,从0开始(当然某些语言实现从1开始 ...

  2. HDU-1828 Picture(扫描线)

    题目大意:给若干个矩形,求轮廓边长. 题目分析:与求面积类似.按从下往上扫描,仍然是底边添加,上边删除.但要同时维护竖边的数目,每次扫描对答案的贡献为扫描线上总覆盖长度的变化量加上竖边的增量.总覆盖长 ...

  3. Unity光照

    广义地说,Unity有2种光源.1.动态光源  2.Backed Lighting 1.动态光源 就是实时计算的.只要摆光源就可以了 2.Backed Lighting 提前处理好光照贴图.贴在物体上 ...

  4. min—width的使用

    在网页中,如果一个元素没有设置最小宽度(min-width),这时当浏览器缩小到一定程度时,元素中的布局可能会发生变化.如果想要保持布局不变,可以给该元素(如div)设置最小宽度属性 .box{ ba ...

  5. 拿什么来拯救你,我的table

    分类: Html/CSS | 转载请注明: 出自 海玉的博客 本文地址: http://www.hicss.net/how-to-save-you-my-table/ table曾经在网页开发中占据着 ...

  6. Iaas-cloudstack概念

    管理serverother high end ports     tomcat20400                     tomcat     server.xml               ...

  7. shell之脚本练习

    脚本需求集合贴-自主开发的 对频繁执行的任务有编写脚本的价值 对单次执行的任务就用笨的,简单的办法 1.对asterisk写一个脚本 查日志 输入日期--能够输出对应日期的日志 输入多个条件--能够输 ...

  8. awk笔记

    http://www.cnblogs.com/zhuyp1015/archive/2012/07/14/2591842.html awk实例练习 http://www.cnblogs.com/repo ...

  9. jQuery.retryAjax

    Overload method for $.ajax that provides the ability to try the request over if it fails the first t ...

  10. android 实现拍照的2种方法

    android系统的照相功能,已实现2种方法,可供大家参考: 1.调用系统摄像头来拍照 首先,找到AndroidManifest.xml文件里加入用户权限 <uses-permission an ...