一、倒排索引

1. 构建倒排索引

例如说有下面两个句子doc1,doc2

doc1:I really liked my small dogs, and I think my mom also liked them.
doc2:He never liked any dogs, so I hope that my mom will not expect me to liked him.

首先进行英文分词,这个阶段就是初步的倒排索引的建立

term doc1 doc2
I * *
really *
liked * *
my * *
small *
dogs *
and *
think *
mom * *
also *
them *
He *
never *
any *
so *
hope *
that *
will *
not *
expect *
me *
to *
him *

接下来就是搜索,假如说搜索为关键词为"mother like little dog",把关键词分词为mother like little dog四个词进行搜索,会发现搜不出来结果。这不是我们想要的结果。但是对于mom来说,它与mother互为同义词。在我们人类看来这两个词代表的意思就是一样。所以能想到的操作就是能不能让这两个词代表的含义一样呢?这就是对词语进行标准化操作了。

2. 重建倒排索引

normalization正规化,建立倒排索引的时候,会执行一个操作,也就是说对拆分出的各个单词进行相应的处理,以提升后面搜索的时候能够搜索到相关联的文档的概率。比如说时态的转换,单复数的转换,同义词的转换,大小写的转换等

mom ―> mother
liked ―> like
small ―> little
dogs ―> dog

重新建立倒排索引,加入normalization,重建后的倒排索引如下

word doc1 doc2 normalization
I * *
really *
like * * liked ―> like
my * *
little * small ―> little
dog * dogs ―> dog
and *
think *
mother * * mom ―> mother
also *
them *
He *
never *
any *
so *
hope *
that *
will *
not *
expect *
me *
to *
him *

3. 重新搜索

再次用mother liked little dog搜索,就可以搜索到了。对搜索条件经行分词 normalization

mother -》mom
liked -》like
little -》small
dog -》dogs

这样的话doc1和doc2都会搜索出来

二、分词器 analyzer

1. 什么是分词器 analyzer

作用:简单来说就是切分词语。给你一段句子,然后将这段句子拆分成一个一个的单个的单词,同时对每个单词进行normalization(时态转换,单复数转换)

normalization的好处就是提升召回率(recall)

recall:搜索的时候,增加能够搜索到的结果的数量

analyzer 组成部分:

  1. character filter:在一段文本进行分词之前,先进行预处理,比如说最常见的就是,过滤html标签(hello --> hello),& --> and(I&you --> I and you)
  2. tokenizer:分词,hello you and me --> hello, you, and, me
  3. token filter:lowercase(小写转换),stop word(去除停用词),synonym(同义词处理),例如:dogs --> dog,liked --> like,Tom --> tom,a/the/an --> 干掉,mother --> mom,small --> little

一个分词器,很重要,将一段文本进行各种处理,最后处理好的结果才会拿去建立倒排索引。

2. 内置分词器的介绍

例句:Set the shape to semi-transparent by calling set_trans(5)

standard analyzer标准分词器:set, the, shape, to, semi, transparent, by, calling, set_trans, 5(默认的是standard)

simple analyzer简单分词器:set, the, shape, to, semi, transparent, by, calling, set, trans

whitespace analyzer:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)

language analyzer(特定的语言的分词器,比如说,english,英语分词器):set, shape, semi, transpar, call, set_tran, 5

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.4/analysis-analyzers.html

三、测试分词器

GET /_analyze
{
"analyzer": "standard",
"text": "Text to analyze 80"
}

返回值:

{
"tokens" : [
{
"token" : "text",
"start_offset" : 0,
"end_offset" : 4,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "to",
"start_offset" : 5,
"end_offset" : 7,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "analyze",
"start_offset" : 8,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "80",
"start_offset" : 16,
"end_offset" : 18,
"type" : "<NUM>",
"position" : 3
}
]
}

token:实际存储的term 关键字

position:在此词条在原文本中的位置

start_offset/end_offset:字符在原始字符串中的位置

ElasticSearch7.3 学习之倒排索引揭秘及初识分词器(Analyzer)的更多相关文章

  1. ElasticSearch(十八)初识分词器

    1.什么是分词器 作用:切分词语,normalization(提升recall召回率),如给你一段句子,然后将这段句子拆分成一个一个的单个的单词,同时对每个单词进行normalization(时态转换 ...

  2. Lucene.net(4.8.0) 学习问题记录二: 分词器Analyzer中的TokenStream和AttributeSource

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  3. 学习笔记(三)--Lucene分词器详解

    Lucene-分词器API org.apache.lucene.analysi.Analyzer 分析器,分词器组件的核心API,它的职责:构建真正对文本进行分词处理的TokenStream(分词处理 ...

  4. Lucene.net(4.8.0) 学习问题记录一:分词器Analyzer的构造和内部成员ReuseStategy

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  5. solr学习篇(二) solr 分词器篇

    关于solr7.4搭建与配置可以参考 solr7.4 安装配置篇  在这里我们探讨一下分词的配置 目录 关于分词 配置分词 验证成功 1.关于分词 1.分词是指将一个中文词语拆成若干个词,提供搜索引擎 ...

  6. ElasticSearch7.3 学习之定制分词器(Analyzer)

    1.默认的分词器 关于分词器,前面的博客已经有介绍了,链接:ElasticSearch7.3 学习之倒排索引揭秘及初识分词器(Analyzer).这里就只介绍默认的分词器standard analyz ...

  7. Lucene.net(4.8.0) 学习问题记录五: JIEba分词和Lucene的结合,以及对分词器的思考

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  8. 狂神说Elasticsearch7.X学习笔记整理

    Elasticsearch概述 一.什么是Elasticsearch? Lucene简介 Lucene是一套用于全文检索和搜寻的开源程序库,由Apache软件基金会支持和提供 Lucene提供了一个简 ...

  9. ElasticSearch7.3学习(二十五)----Doc value、query phase、fetch phase解析

    1.Doc value 搜索的时候,要依靠倒排索引: 排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序. 所谓的正排索引,其实就是doc values. 在建立索引 ...

随机推荐

  1. Protocol基本概念

    1.protocol 基本概念 Protocol翻译过来, 叫做"协议" 在写java的时候都会有接口interface这个概念,接口就是一堆方法的声明没有实现,而在OC里面Int ...

  2. Haproxy LVS Nginx的优缺点总结

    Haproxy  LVS  Nginx的优缺点总结 1.haproxy优点 2.Nginx优点 3.Nginx缺点 4.LVS优点 5.LVS缺点 haproxy优点: haproxy也是支持虚拟主机 ...

  3. 在Excel VBA中使用SQL到底优势在哪儿

    小爬在之前的博文中多次提到,可以在VBA中写SQL来操作Excel文件,实现各类数据处理和分析需求.那么,你可能有这样的疑问:Excel原生的VBA,数据透视表,数据分析功能不够吗,为啥一定要用SQL ...

  4. 在VMware上安装Linux虚拟机

    1.新建虚拟机 2.选择典型安装 3.点击稍后安装操作系统 4.选择类型和版本 5.选择一个英文路径 6. 7.调整硬件 8. 9. 10.选择第一项 11.选择中文 12.选择最小安装 13. 14 ...

  5. 如何对Spring MVC中的Controller进行单元测试

    对Controller进行单元测试是Spring框架原生就支持的能力,它可以模拟HTTP客户端发起对服务地址的请求,可以不用借助于诸如Postman这样的外部工具就能完成对接口的测试. 具体来讲,是由 ...

  6. Jetpack的ViewModel与LiveData

    本文基于SDK 29 一.ViewModel与LiveData的作用: 1.viewModel: 数据共享,屏幕旋转不丢失数据,并且在Activity与Fragment之间共享数据. 2.LiveDa ...

  7. Solution -「CF 494C」Helping People

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\) 和 \(m\) 个操作,第 \(i\) 个操作有 \(p_i\) 的概率将 \([l_i,r_ ...

  8. python 2048游戏控制器

    2048游戏控制器 1 evaluate 要用程序来处理就得对现实的问题进行量化,用数字来表示.在2048游戏中,我们的输入是一个棋局,让我们输出一个移动方向,这样我们需要对棋局进行量化,即我们要评估 ...

  9. Linux性能优化之内存性能统计信息

    关于内存的概念及其原理在任何一本介绍操作系统的书本中都可以查阅到. 理论放一遍,在Linux操作系统中如何查看系统内存使用情况呢?看看内存统计信息有哪些维度. 一.内存使用量 详细使用方法,man f ...

  10. AQS源码二探-JUC系列

    本文已在公众号上发布,感谢关注,期待和你交流. AQS源码二探-JUC系列 共享模式 doAcquireShared 这个方法是共享模式下获取资源失败,执行入队和等待操作,等待的线程在被唤醒后也在这个 ...