前言

旋转卡壳(Rotating Calipers)可以在凸包上维护许多有用的信息,最常见的就是凸包直径(平面最远点对)。

注意:本文不介绍所谓的 “人类智慧” 乱搞做法。

算法流程

首先我们需要求出点集的凸包(我个人喜欢 Andrew 算法)。

然后我们考虑选定凸包的一条边所在的直线,比如 \(AB\)。然后找到凸包的所有顶点中离它最远的点,在这个例子中是 \(D\)。然后凸包直径就 可能 是 \(AD\) 或 \(BD\)。

然后我们继续。逆时针选择下一条边 \(AE\),这时我们发现最远点变成了 \(C\),然后尝试用 \(AC,EC\) 更新答案。以此类推。这样我们就找到了凸包直径。

但是这样子时间复杂度是 \(O(n^2)\) 的,应该无法通过。

但是根据以前的经验,似乎最远点也是逆时针旋转的。换句话说,逆时针遍历的点到直线的距离单调。

这也可以用凸包的凸性来解释。我无法给出详细证明,但是大家不妨手动画几个图,就可以感性的理解了。

于是我们就可以用一个漂亮的双指针解决了。

P145 【模板】旋转卡壳 代码

注意本题需要输出凸包直径的平方。

#include <bits/stdc++.h>
#define int long long
using namespace std; int n; const double eps=1e-9;
int dcmp(double x){
return (fabs(x)<=eps)?0:(x<0?-1:1);
}
struct Point{
double x,y;
Point(double X=0,double Y=0){x=X,y=Y;}
};
struct Vector{
double x,y;
Vector(double X=0,double Y=0){x=X,y=Y;}
};
inline Vector operator-(Point x,Point y){// 点-点=向量
return Vector(x.x-y.x,x.y-y.y);
}
inline double cross(Vector x,Vector y){ // 向量叉积
return x.x*y.y-x.y*y.x;
}
inline double operator*(Vector x,Vector y){ // 向量叉积
return cross(x,y);
}
inline double len(Vector x){ // 向量模长
return sqrt(x.x*x.x+x.y*x.y);
} int stk[50005];
bool used[50005];
vector<Point> ConvexHull(Point* poly, int n){ // Andrew算法求凸包
int top=0;
sort(poly+1,poly+n+1,[&](Point x,Point y){
return (x.x==y.x)?(x.y<y.y):(x.x<y.x);
});
stk[++top]=1;
for(int i=2;i<=n;i++){
while(top>1&&dcmp((poly[stk[top]]-poly[stk[top-1]])*(poly[i]-poly[stk[top]]))<=0){
used[stk[top--]]=0;
}
used[i]=1;
stk[++top]=i;
}
int tmp=top;
for(int i=n-1;i;i--){
if(used[i]) continue;
while(top>tmp&&dcmp((poly[stk[top]]-poly[stk[top-1]])*(poly[i]-poly[stk[top]]))<=0){
used[stk[top--]]=0;
}
used[i]=1;
stk[++top]=i;
}
vector<Point> a;
for(int i=1;i<=top;i++){
a.push_back(poly[stk[i]]);
}
return a;
} struct Line{
Point x;Vector y;
Line(Point X,Vector Y){x=X,y=Y;}
Line(Point X,Point Y){x=X,y=Y-X;}
}; inline double DistanceToLine(Point P,Line x){// 点到直线的距离
Vector v1=x.y, v2=P-x.x;
return fabs(cross(v1,v2))/len(v1);
} double RoatingCalipers(vector<Point> poly){// 旋转卡壳
if(poly.size()==3) return len(poly[1]-poly[0]);
int cur=0;
double ans=0;
for(int i=0;i<poly.size()-1;i++){
Line line(poly[i],poly[i+1]);
while(DistanceToLine(poly[cur], line) <= DistanceToLine(poly[(cur+1)%poly.size()], line)){
cur=(cur+1)%poly.size();
}
ans=max(ans, max(len(poly[i]-poly[cur]), len(poly[i+1]-poly[cur])));
}
return ans;
} Point poly[50005]; signed main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>poly[i].x>>poly[i].y;
double v=RoatingCalipers(ConvexHull(poly, n));
cout<<(int)(v*v);
return 0;
}

旋转卡壳(求凸包直径)学习笔记 | 题解 P1452 [USACO03FALL]Beauty Contest G /【模板】旋转卡壳的更多相关文章

  1. luogu P1452 [USACO03FALL]Beauty Contest G /【模板】旋转卡壳

    LINK:旋转卡壳 如题 是一道模板题. 容易想到n^2暴力 当然也能随机化选点 (还真有人过了 考虑旋转卡壳 其实就是对于某个点来说找到其最远的点. 在找的过程中需要借助一下个点的帮助 利用当前点到 ...

  2. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  3. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  5. Yii框架学习笔记(二)将html前端模板整合到框架中

    选择Yii 2.0版本框架的7个理由 http://blog.chedushi.com/archives/8988 刚接触Yii谈一下对Yii框架的看法和感受 http://bbs.csdn.net/ ...

  6. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  7. 位运算求最值 学习笔记 (待补充QAQ)

    没有什么前言?直接进入正题qwq 俩俩异或 求最值: 建trie树 O(n)枚举每个数找这个数的最值,每次反走就成,还可以剪枝一波(如果在某位已经小于ans显然可以直接return? void Ins ...

  8. Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离

    \(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接 ...

  9. 【洛谷 P1452】 Beauty Contest (二维凸包,旋转卡壳)

    题目链接 旋转卡壳模板题把. 有时间再补总结吧. #include <cstdio> #include <cmath> #include <algorithm> u ...

  10. DirectX11 学习笔记2 - 加入关键事件 实现视角转换 旋转

    上的程序的的基础上.在基类D3DBase添加摄像头功能 //录影机 void D3DBase::setCamera() { //关键事件 //假定A,S,D,W,Q,E,Z,X,C键被按下.动摄像机 ...

随机推荐

  1. 【题解】CF1720C

    题意简述 给你一个 01 矩阵,每一次你可以在这个矩阵中找到一个 \(L\) 型,将它全部变成 0.\(L\) 型的定义是在一个 \(2\times2\) 矩阵中,除开一个角之外的图形,其中必须包含至 ...

  2. 靶机: easy_cloudantivirus

    靶机: easy_cloudantivirus 准备 下载靶机(Target):https://www.vulnhub.com/entry/boredhackerblog-cloud-av,453/ ...

  3. 9.为url添加可选的后缀

    为url添加可选的后缀 在drf的机制中,响应数据的格式不再与单一内容类型连接,可以同时享有json格式或html格式,我们可以为api路径添加格式后缀的支持,使用格式后缀给我们明确指定了给定格式的u ...

  4. certutil做哈希校验并下载网络文件

    微软Win系统自带,不需要安装的工具,但它是CMD命令行工具,关于命令行工具的说明和使用请参考我以前的文章 Windows系统的命令行(CLI)介绍及入门使用说明 . 这个微软自带的命令行工具叫做 c ...

  5. CSS 动画一站式指南

    CSS 动画一站式指南 目录 CSS 动画一站式指南 1. CSS 动画 1.1 变换 1.1.1 变换属性介绍 1.1.2 变换动画实践 1.2 过渡 1.2.1 过渡属性介绍 1.2.2 过渡动画 ...

  6. 使用jmx exporter采集kafka指标

    预置条件 安装kafka.prometheus 使用JMX exporter暴露指标 下载jmx exporter以及配置文件.Jmx exporter中包含了kafka各个组件的指标,如server ...

  7. 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

    项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...

  8. CC1,3,6回顾

    前言 前面陆续学习了CC1,CC3,CC6,以及TemplatesImpl以及改造,有点乱,正所谓温故而知新嘛,所以这篇就回顾一下,捋一捋,解决一些细节问题. CC1 由于CC1要介绍CC链的几个关键 ...

  9. SpringBoot使用poi实现导出excel

    //实体类 //导出的数据的实体 public class User { private String id; private String name; private String year; // ...

  10. Vue 基础学习总结

    介绍 Vue.js 中文文档地址:https://cn.vuejs.org/guide/introduction.html#what-is-vue Vue.js 是什么 Vue (读音 /vjuː/, ...