旋转卡壳(求凸包直径)学习笔记 | 题解 P1452 [USACO03FALL]Beauty Contest G /【模板】旋转卡壳
前言
旋转卡壳(Rotating Calipers)可以在凸包上维护许多有用的信息,最常见的就是凸包直径(平面最远点对)。
注意:本文不介绍所谓的 “人类智慧” 乱搞做法。
算法流程
首先我们需要求出点集的凸包(我个人喜欢 Andrew 算法)。

然后我们考虑选定凸包的一条边所在的直线,比如 \(AB\)。然后找到凸包的所有顶点中离它最远的点,在这个例子中是 \(D\)。然后凸包直径就 可能 是 \(AD\) 或 \(BD\)。

然后我们继续。逆时针选择下一条边 \(AE\),这时我们发现最远点变成了 \(C\),然后尝试用 \(AC,EC\) 更新答案。以此类推。这样我们就找到了凸包直径。
但是这样子时间复杂度是 \(O(n^2)\) 的,应该无法通过。
但是根据以前的经验,似乎最远点也是逆时针旋转的。换句话说,逆时针遍历的点到直线的距离单调。
这也可以用凸包的凸性来解释。我无法给出详细证明,但是大家不妨手动画几个图,就可以感性的理解了。
于是我们就可以用一个漂亮的双指针解决了。
P145 【模板】旋转卡壳 代码
注意本题需要输出凸包直径的平方。
#include <bits/stdc++.h>
#define int long long
using namespace std;
int n;
const double eps=1e-9;
int dcmp(double x){
return (fabs(x)<=eps)?0:(x<0?-1:1);
}
struct Point{
double x,y;
Point(double X=0,double Y=0){x=X,y=Y;}
};
struct Vector{
double x,y;
Vector(double X=0,double Y=0){x=X,y=Y;}
};
inline Vector operator-(Point x,Point y){// 点-点=向量
return Vector(x.x-y.x,x.y-y.y);
}
inline double cross(Vector x,Vector y){ // 向量叉积
return x.x*y.y-x.y*y.x;
}
inline double operator*(Vector x,Vector y){ // 向量叉积
return cross(x,y);
}
inline double len(Vector x){ // 向量模长
return sqrt(x.x*x.x+x.y*x.y);
}
int stk[50005];
bool used[50005];
vector<Point> ConvexHull(Point* poly, int n){ // Andrew算法求凸包
int top=0;
sort(poly+1,poly+n+1,[&](Point x,Point y){
return (x.x==y.x)?(x.y<y.y):(x.x<y.x);
});
stk[++top]=1;
for(int i=2;i<=n;i++){
while(top>1&&dcmp((poly[stk[top]]-poly[stk[top-1]])*(poly[i]-poly[stk[top]]))<=0){
used[stk[top--]]=0;
}
used[i]=1;
stk[++top]=i;
}
int tmp=top;
for(int i=n-1;i;i--){
if(used[i]) continue;
while(top>tmp&&dcmp((poly[stk[top]]-poly[stk[top-1]])*(poly[i]-poly[stk[top]]))<=0){
used[stk[top--]]=0;
}
used[i]=1;
stk[++top]=i;
}
vector<Point> a;
for(int i=1;i<=top;i++){
a.push_back(poly[stk[i]]);
}
return a;
}
struct Line{
Point x;Vector y;
Line(Point X,Vector Y){x=X,y=Y;}
Line(Point X,Point Y){x=X,y=Y-X;}
};
inline double DistanceToLine(Point P,Line x){// 点到直线的距离
Vector v1=x.y, v2=P-x.x;
return fabs(cross(v1,v2))/len(v1);
}
double RoatingCalipers(vector<Point> poly){// 旋转卡壳
if(poly.size()==3) return len(poly[1]-poly[0]);
int cur=0;
double ans=0;
for(int i=0;i<poly.size()-1;i++){
Line line(poly[i],poly[i+1]);
while(DistanceToLine(poly[cur], line) <= DistanceToLine(poly[(cur+1)%poly.size()], line)){
cur=(cur+1)%poly.size();
}
ans=max(ans, max(len(poly[i]-poly[cur]), len(poly[i+1]-poly[cur])));
}
return ans;
}
Point poly[50005];
signed main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>poly[i].x>>poly[i].y;
double v=RoatingCalipers(ConvexHull(poly, n));
cout<<(int)(v*v);
return 0;
}
旋转卡壳(求凸包直径)学习笔记 | 题解 P1452 [USACO03FALL]Beauty Contest G /【模板】旋转卡壳的更多相关文章
- luogu P1452 [USACO03FALL]Beauty Contest G /【模板】旋转卡壳
LINK:旋转卡壳 如题 是一道模板题. 容易想到n^2暴力 当然也能随机化选点 (还真有人过了 考虑旋转卡壳 其实就是对于某个点来说找到其最远的点. 在找的过程中需要借助一下个点的帮助 利用当前点到 ...
- UVa 1453 - Squares 旋转卡壳求凸包直径
旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...
- POJ 2187 Beauty Contest【旋转卡壳求凸包直径】
链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方
旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...
- Yii框架学习笔记(二)将html前端模板整合到框架中
选择Yii 2.0版本框架的7个理由 http://blog.chedushi.com/archives/8988 刚接触Yii谈一下对Yii框架的看法和感受 http://bbs.csdn.net/ ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- 位运算求最值 学习笔记 (待补充QAQ)
没有什么前言?直接进入正题qwq 俩俩异或 求最值: 建trie树 O(n)枚举每个数找这个数的最值,每次反走就成,还可以剪枝一波(如果在某位已经小于ans显然可以直接return? void Ins ...
- Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离
\(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接 ...
- 【洛谷 P1452】 Beauty Contest (二维凸包,旋转卡壳)
题目链接 旋转卡壳模板题把. 有时间再补总结吧. #include <cstdio> #include <cmath> #include <algorithm> u ...
- DirectX11 学习笔记2 - 加入关键事件 实现视角转换 旋转
上的程序的的基础上.在基类D3DBase添加摄像头功能 //录影机 void D3DBase::setCamera() { //关键事件 //假定A,S,D,W,Q,E,Z,X,C键被按下.动摄像机 ...
随机推荐
- 【题解】CF1720C
题意简述 给你一个 01 矩阵,每一次你可以在这个矩阵中找到一个 \(L\) 型,将它全部变成 0.\(L\) 型的定义是在一个 \(2\times2\) 矩阵中,除开一个角之外的图形,其中必须包含至 ...
- 靶机: easy_cloudantivirus
靶机: easy_cloudantivirus 准备 下载靶机(Target):https://www.vulnhub.com/entry/boredhackerblog-cloud-av,453/ ...
- 9.为url添加可选的后缀
为url添加可选的后缀 在drf的机制中,响应数据的格式不再与单一内容类型连接,可以同时享有json格式或html格式,我们可以为api路径添加格式后缀的支持,使用格式后缀给我们明确指定了给定格式的u ...
- certutil做哈希校验并下载网络文件
微软Win系统自带,不需要安装的工具,但它是CMD命令行工具,关于命令行工具的说明和使用请参考我以前的文章 Windows系统的命令行(CLI)介绍及入门使用说明 . 这个微软自带的命令行工具叫做 c ...
- CSS 动画一站式指南
CSS 动画一站式指南 目录 CSS 动画一站式指南 1. CSS 动画 1.1 变换 1.1.1 变换属性介绍 1.1.2 变换动画实践 1.2 过渡 1.2.1 过渡属性介绍 1.2.2 过渡动画 ...
- 使用jmx exporter采集kafka指标
预置条件 安装kafka.prometheus 使用JMX exporter暴露指标 下载jmx exporter以及配置文件.Jmx exporter中包含了kafka各个组件的指标,如server ...
- 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...
- CC1,3,6回顾
前言 前面陆续学习了CC1,CC3,CC6,以及TemplatesImpl以及改造,有点乱,正所谓温故而知新嘛,所以这篇就回顾一下,捋一捋,解决一些细节问题. CC1 由于CC1要介绍CC链的几个关键 ...
- SpringBoot使用poi实现导出excel
//实体类 //导出的数据的实体 public class User { private String id; private String name; private String year; // ...
- Vue 基础学习总结
介绍 Vue.js 中文文档地址:https://cn.vuejs.org/guide/introduction.html#what-is-vue Vue.js 是什么 Vue (读音 /vjuː/, ...