P2599 [ZJOI2009]取石子游戏 做题感想
前言
发现自己三岁时的题目都不会做。
我发现我真的是菜得真实。
正文
神仙构造,分讨题。
不敢说有构造,但是分讨我只服这道题。
看上去像是一个类似 \(Nim\) 游戏的变种,经过不断猜测结论无果后果断弃疗。
(然后我就出门右转直接进了题解区),在这里记录一下自己的理解。
设 \(l_{i,j}\) 表示在 \(i\sim j\) 这个区间左边再加一堆 \(l_{i,j}\) 的石子时,先手必败。
同理,设 \(r_{i,j}\) 表示在 \(i\sim j\) 这个区间右边再加一堆 \(r_{i,j}\) 的石子时,先手必败。
(以下的所有证明以及验证我们都以 \(l_{i,j}\) 为准,\(r_{i,j}\) 情况相同)。
等等,如果上述满足条件的石子个数不唯一,怎么办?
好像不太好搞欸,是不是要再开一维数组?
既然不唯一的情况这么困难,为什么不想想会不会存在这种情况呢?
证明:
我们假设 \(l_{i,j}\) 存在两种可能 \(a\) 和 \(b\) ,且我们钦定 \(a < b\)。
既然 \(a\) 和 \(b\) 都满足要求,所以此时都是必败态。
但是很显然,我们可以让先手对于 \(b\) 的情况一直取直到 \(a\) 。
此时先手让后手到了一个必败态所以先手必败。??(对,这就是不唯一时的推理)
所以可以得出,\(l_{i,j}\) 一定是唯一的。
那万一 \(l_{i,j}\) 不存在怎么办?
等一等,\(l_{i,j}\) 是不是一定存在呢?
在这里我口胡一下:
因为对于所有的 \([i,j]\) 区间都不存在 \(l_{i,j}\) ,则对于所有从左边拿的一定是必胜态。
但是如果只有一堆石子 \(a\) 的话:此时可以发现 \(l_{i,j} = a\) 因为此时先手怎么取后手也学者他。
这样的话后手会取完最后一个石子。
所以,\(l_{i,j}\) 一定是存在的的。
现在来进行刺激的分讨过程。
我在这里会对每一种可能的结果进行简要的说明。
- 首先我们先来考虑边界的情况:
就和我之前说的一样 \(l_{i,i} = a_i\) , \(r_{i,i}\) 同理。
为了方便起见,我们令 \(x=a_j\) , \(L =l_{i,j-1}\) , \(R=r_{i,j-1}\) 。
- ( \(x < L\) 且 \(x <R\) ) 或者 ( \(x > L\) 且 \(x >R\) )
\(l_{i,j} = x\) 。
此时我们可以运用类似之前的方法,先手取什么,后手就取什么。
那么最后的结果就是先手先取完了左右两端石子中的一堆。
然后后手可以随便取另一边的一堆,使得此堆的数量变成 \(l_{i,j}\) 或 \(r_{i,j}\) 。
- \(R<x<L\)
\(L_{i,j} = x-1\)
假设先手先拿了左边这一堆。
那么假设还剩下了 \(x\) 个石子,如果 \(x<R\),后手把右侧的那一堆也给拿成 \(x\) 就成了( \(x < L\) 且 \(x <R\) )这种情况。
如果 \(x\geq R\),那么后手把最后那一堆拿成 \(x+1\),于是又回到了我们讨论的这种情况。
同理,我们也可以推出右边先取玩的的情况。
- \(L<x<R\)
\(L_{i,j} = x+1\)
和上一种基本上是一摸一样,在这里就不讲了。
Code
#include <bits/stdc++.h>
#define file(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
#define Enter puchar('\n')
#define quad putchar(' ')
const int N = 1005;
int T, a[N], l[N][N], r[N][N];
signed main(void) {
// file("P2599");
std::cin >> T;
for (int test = 1, n; test <= T; test++) {
std::cin >> n;
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 1; i <= n; i++)
l[i][i] = r[i][i] = a[i];
for (int len = 1; len <= n; len ++) {
for (int i = 1; i + len - 1 <= n; i++) {
int j = i + len - 1;
int L, R, x;
x = a[j];
L = l[i][j - 1]; R = r[i][j - 1];
if (R == x) l[i][j] = 0;
else if (x < L && x < R) l[i][j] = x;
else if (x > L && x > R) l[i][j] = x;
else if (R < x && x < L) l[i][j] = x - 1;
else l[i][j] = x + 1;
x = a[i];
L = l[i + 1][j]; R = r[i + 1][j];
if (L == x) r[i][j] = 0;
else if (x < L && x < R) r[i][j] = x;
else if (x > L && x > R) r[i][j] = x;
else if (R < x && x < L) r[i][j] = x + 1;
else r[i][j] = x - 1;
}
}
if (l[2][n] == a[1]) std::cout << "0" << std::endl;
else std::cout << "1" << std::endl;
}
}
P2599 [ZJOI2009]取石子游戏 做题感想的更多相关文章
- 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)
[BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...
- bzoj 1413 [ZJOI2009]取石子游戏
1413: [ZJOI2009]取石子游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 747 Solved: 490[Submit][Statu ...
- 【一本通提高博弈论】[ZJOI2009]取石子游戏
[ZJOI2009]取石子游戏 题目描述 在研究过 Nim 游戏及各种变种之后,Orez 又发现了一种全新的取石子游戏,这个游戏是这样的: 有 n n n 堆石子,将这 n n n 堆石子摆成一排.游 ...
- 【刷题】BZOJ 1413 [ZJOI2009]取石子游戏
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从 ...
- vijos 1557:bzoj:1413: [ZJOI2009]取石子游戏
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从 ...
- bzoj1413 [ZJOI2009]取石子游戏
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从 ...
- 洛谷P2599||bzoj1413 [ZJOI2009]取石子游戏
bzoj1413 洛谷P2599 根本不会啊... 看题解吧 #include<cstdio> #include<algorithm> #include<cstring& ...
- [ZJOI2009]取石子游戏
瞪了题解两三天,直接下转第二篇题解就康懂了 首先我们令 : \(L[i][j]\) 表示当前 \([i,j]\) 区间左侧放置 \(L[i,j]\) 数量的石子后先手必败 \(R[i][j]\) 表示 ...
- Games:取石子游戏(POJ 1067)
取石子游戏 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37662 Accepted: 12594 Descripti ...
随机推荐
- 攻防世界-MISC:glance-50
这是攻防世界MISC高手进阶区的题目,题目如下: 点击下载附件一,得到一张GIF动图如下 找个网站给分离一下,将gif分离为图片,共201张,然后拼接在一起即可得到flag 所以这道题的flag如下: ...
- SpringBoot 读取配置文件数据
- Go 语言快速开发入门
目录 需求 开发的步骤 linux下如何开发Go程序 MAC下如何开发Go程序 Golang执行流程分析 编译和运行说明 Go程序开发的注意事项 Go语言的转义字符(escapechar) Golan ...
- Java编程小技巧(1)——方法传回两个对象
原文地址:Java编程小技巧(1)--方法传回两个对象 | Stars-One的杂货小窝 题目是个伪命题,由Java语法我们都知道,方法要么返回一个对象,要么就不返回 当有这样的情况,我们需要返回两个 ...
- 手脱PESpin壳【06.exe】
1.查壳 2.LoradPE工具检查 一方面可以用LoradPE工具查看重定位,另一方面也可获取一些详细信息 3.查找OEP ①未发现pushad 开始未发现pushad,进行单步步入,很快就能找到p ...
- docker 1.2 之docker基本用法
1.docker的基本用法 镜像相关操作:dockerhub查找镜像,例如查找centos的镜像 [root@elk ~]# docker search centos NAME DESCRIPTION ...
- Spring 源码(17)Spring Bean的创建过程(8)Bean的初始化
知识回顾 Bean的创建过程会经历getBean,doGetBean,createBean,doCreateBean,然后Bean的创建又会经历实例化,属性填充,初始化. 在实例化createInst ...
- vuex+Es6语法补充-Promise
Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式,采用 集中式存储管理 单页面的状态管理/多页面状态管理 使用步骤: // 1.导入 import Vuex from 'vuex' // ...
- JavaSE_关键字 接口 代码块 枚举
1 Java中的关键字 1.1 static关键字 static特点 : 静态成员被所在类的所有对象共享 随着类的加载而加载 , 优先于对象存在 可以通过对象调用 , 也可以通过类名调用 , 建议使用 ...
- 理“ Druid 元数据”之乱
vivo 互联网大数据团队-Zheng Xiaofeng 一.背景 Druid 是一个专为大型数据集上的高性能切片和 OLAP 分析而设计的数据存储系统. 由于Druid 能够同时提供离线和实时数据的 ...