洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)
题目描述
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
N头牛排成一列1<=N<=5000。每头牛或者向前或者向后。为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的对应的最小K和最少次数M。
输入输出格式
输入格式:
Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
输出格式:
Line 1: Two space-separated integers: K and M
输入输出样例
输入样例#1:
7
B
B
F
B
F
B
B
输出样例#1:
3 3
说明
For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)
这道题可以枚举每一种情况,然后O(n)判断是否可行。用all来表示当前的所有操作对这个点所产生的影响,并时刻更新。别忘了最后判断是否已经全部为F。
#include <bits/stdc++.h>
#define int long long
#define For(i, a, b) for (register int i = a; i <= b; i++)
using namespace std;
int n, a[5500], ans, rev[5500], all, tot, mn = 0x3f3f3f3f, mnat;
char ch;
bool ok(int x) {
memset(rev, 0, sizeof rev);
all = 0, tot = 0;
For(i, 1, n - x + 1) {
if ((a[i] + all) % 2 == 1) {
rev[i] = 1;
tot++;
}
all += rev[i];
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
if (tot > mn)
return 0;
For(i, n - x + 2, n) {
if ((a[i] + all) % 2 == 1)
return 0;
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
return 1;
}
signed main() {
cin >> n;
For(i, 1, n) {
cin >> ch;
a[i] = (ch == 'F' ? 0 : 1);
}
For(i, 1, n) {
if (ok(i) && tot < mn) {
mn = tot;
mnat = i;
}
}
cout << mnat << " " << mn << '\n';
return 0;
}
洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)的更多相关文章
- bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way
P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...
- [USACO07MAR]面对正确的方式Face The Right Way
题目概括 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing f ...
- 洛谷 P2882 [USACO07MAR]Face The Right Way G
题目传送门 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...
- 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)
洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...
- 洛谷P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…
P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...
- 洛谷 P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…
P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...
- 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)
P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...
- 洛谷P1360 [USACO07MAR]黄金阵容均衡题解
题目 不得不说这个题非常毒瘤. 简化题意 这个题的暴力还是非常好想的,完全可以过\(50\%\)的数据.但是\(100\%\)就很难想了. 因为数据很大,所以我们需要用\(O(\sqrt n)\)的时 ...
- 洛谷P2881 [USACO07MAR]排名的牛Ranking the Cows(bitset Floyd)
题意 题目链接 Sol 显然如果题目什么都不说的话需要\(\frac{n * (n - 1)}{2}\)个相对关系 然后求一下传递闭包减掉就行了 #include<bits/stdc++.h&g ...
随机推荐
- 基于ZYNQ的uart传输任意长度的数据
1.参考 UG585 网络笔记 参考:ZYNQ进阶之路14–PS端uart串口接收不定长数据 2.理论知识 参见上一次实验:基于ZYNQ 的UART中断实验之串口写数据到DDR3中 3.实验目的 基于 ...
- kubernetes学习一:安装及部署第一个Web应用
准备工作 首先准备Kubernets的环境,使用的是centos7.5 关闭防火墙: # systemctl disable firewalld # systemctl stop firewalld ...
- Linux内核宏DEVICE_ATTR使用
1.前言 在Linux驱动程序编写中,使用DEVICE_ATTR宏,可以定义一个struct device_attribute设备属性,并使用sysfs的API函数,便可以在设备目录下创建出属性文件, ...
- DRF框架和Vue框架阅读目录
Vue框架目录 (一)Vue框架(一)——Vue导读.Vue实例(挂载点el.数据data.过滤器filters).Vue指令(文本指令v-text.事件指令v-on.属性指令v-bind.表单指令v ...
- linux 判断一个用户是否存在
#!/bin/bash read -p "please input a username:" username >&; then echo "user ex ...
- TestNG系列(一)TestNG+Eclipse环境配置
前提 1.JDK的安装与环境变量的配置 2.Eclipse的下载与安装 以上这些是基础中的基础,不再详细介绍. Eclipse安装TestNG插件 打开eclipse--->help---> ...
- 如何查找YUM安装的JAVA_HOME环境变量详解
如何查找YUM安装的JAVA_HOME环境变量详解 更新时间:2017年10月27日 09:44:56 作者:铁锚 我要评论 这篇文章主要给大家介绍了关于如何查找YUM安装的JAVA_HOM ...
- ad域的那些事儿
先附上参考链接,有空再来整理 基础知识:https://www.cnblogs.com/cnjavahome/p/9029665.html ad域的操作:https://www.cnblogs.com ...
- NET 实例化泛形对象并赋值
1.泛形方法:具体实例点击查看BuilderResultList /// <summary> /// 实例化泛形对象并赋值 /// </summary> /// <typ ...
- 阿里巴巴Java开发手册更新了!
自2017年,<阿里巴巴Java开发手册>发布,现已有超过260万位工程师下载及查阅手册,在数以千计的企业应用,手册成为受业界认可的开发规范. 昨天,<Java开发手册>再次更 ...