python性能分析和优化,GIL常考题

什么是Cpython GIL

  • Cpython解释器的内存管理并不是线程安全的
  • 保护多线程情况下对python对象访问
  • Cpython使用简单的锁机制避免多个线程同时执行字节码

GIL的影响

限制了程序的多核执行

  • 同一个时间只能有一个线程执行字节码
  • CPU密集程序难以利用多核优势
  • IO期间会释放GIL,对IO密集程序影响不大

如何规避GIL影响和IO密集程序

  • CPU密集可以使用多进程+进程池
  • IO密集使用多线程/协程
  • Cpython扩展

为什么有了GIl还要关注线程安全

python中什么操作才是原子的?一步到位执行完

  • 一个操作如果是一个字节码指令可以完成就是原子的
  • 原子的是可以保证线程安全的
  • 使用dis操作来分析字节码

原子操作

import dis

def update_list(l):
l[0] = 1 #原子操作,不用担心线程安全问题 dis.dis(update_list)
"""
6 0 LOAD_CONST 1 (1)
3 LOAD_FAST 0 (L)
6 LOAD_CONST 2 (0)
9 STORE_SUBSCR # 但字节码操作 线程安全
10 LOAD_CONST 0 (None)
13 RETURN_VALUE
"""

非原子操作不是线程安全的

def incr_list(l):
l[0] += 1 #危险!!! 不是原子操作 dis.dis(incr_list)
"""
21 0 LOAD_FAST 0(l)
3 LOAD_CONST 1 (0)
6 DUP_TOPX 2
9 BINARY_SUBSCR
10 LOAD_CONST 2 (1)
13 INPLACE_ADD # 需要多个字节码操作,有可能在线程中切到其他线程
"""
import threading

lock = threading.Lock() # 加锁,保证线程安全
# 加锁操作对性能有一定影响
n = [0] def foo():
with lock:
n[0] = n[0] + 1
n[0] = n[0] + 1
threads = []
for i in range(5000);
t = threading.Thread(target=foo)
threads.append(t) for t in threads:
t.start() print(n)

如何剖析程序性能

使用各种profile工具(内置或第三方)

  • 二八定律,大部分时间耗时在少量代码上
  • 内置的profile/cprofile等工具
  • 使用pyflame(uber开源)的火焰图工具

服务端性能优化措施

web应用一般语言不会成为瓶颈

  • 数据结构与算法优化
  • 数据库层: 索引优化,满查询消除,批量操作减少IO,NoSql
  • 网络IO:批量操作,pipeline操作 减少IO
  • 缓存: 使用内存数据库 redis/memcached
  • 异步; asyncio , celery
  • 并发: gevent/多线程
python生成器与协程

Generator

  • 生成器就是可以生成值的函数
  • 当一个函数里有了yield关键字就成了生成器
  • 生成器可以挂起执行并且保持当前执行的状态
# 生成器
def simple_gen():
yield 'hello'
yield 'world' gen = simple_gen()
print(type(gen)) # 'generator' object
print(next(gen)) # 'hello'
print(next(gen)) # 'world'

基于生成器的协程(python2)

python3之前没有原生协程,只有基于生成器的协程

  • pep 342增强生成器功能
  • 生成器可以通过yield暂停执行和产出数据
  • 同时支持send()向生成器发送数据和throw()向生成器抛出异常
def coro():
hello = yield 'hello' # yield关键字在=右边作为表达式, 可以被sengd的值
yield hello c = cor0()
#输出 ' hello' ,这里调用next产出一个值 'hello',之后函数暂停
print(next(c))
# 再次调用send发送值, 此时hello变量赋值为'world', 然后yield产出hello变量的值 'world'
print(c.send('world'))
# 之后协程结束,后续再send值会抛出异常StopIteration

python3原生协程

python3.5引入async/await支持原生协程(natice copoutine)

import asyncio
import datetime
import random async def display_date(num, loop):
end_time = loop.time(0) + 50.0
while True:
print('Loop: {} Time: {}').format(num, datetime.datetime.now())
if (loop.time() + 1.0) >= end_time:
break
await asyncio.sleep(random.randint(0, 5)) loop = asyncio.get_event_loop()
asyncio.ensure_future(display_date(1, loop))
asyncio.ensure_future(display_date(2, loop))
loop.run_forever()

python 单元测试

什么是单元测试

  • 针对程序模式进行正确性检验
  • 一个函数, 一个类进行验证
  • 自底向上保证程序正确性

为什么要写单元测试

三无代码不可取(无文档,无注释,无单测)

  • 保证代码逻辑的正确性(甚至有些采用测试驱动开发TDD)
  • 单测影响设计,易测的代码往往是高内聚低耦合的
  • 回归测试,防止改一处整个服务不可用

单元测试相关的库

  • nose/pytest 较为常用
  • mock 模块用来模拟替换网络请求等
  • coverage 统计测试覆盖率
def test():
"""
如何设计测试用例:(等价类划分)
- 正常功能测试
- 边界值 (比如最大最小,最左最右值)
- 异常值 (比如None, 空值,非法值)
"""
assert binary_search([0,1,2,3,4,5],1) == 1
assert binary_search([0,1,2,3,4,5],6) == -1

python深拷贝与浅拷贝

  • 什么是深拷贝?什么是浅拷贝?
  • python中如何实现深拷贝?
  • 思考: python中如何正确初始化一个二维数组?

python面试总结3(性能分析优化,GIl常考题)的更多相关文章

  1. python 数据较大 性能分析

    前提:若有一个几百M的文件需要解析,某个函数需要运行很多次(几千次),需要考虑性能问题 性能分析模块:cProfile 使用方法:cProfile.run("func()"),其中 ...

  2. python pstats ,profile 性能分析

    #! /usr/bin/env python # encoding=utf8 import pstats import profile def func1(): for i in range(1000 ...

  3. 如何进行python性能分析?

    在分析python代码性能瓶颈,但又不想修改源代码的时候,ipython shell以及第三方库提供了很多扩展工具,可以不用在代码里面加上统计性能的装饰器,也能很方便直观的分析代码性能.下面以我自己实 ...

  4. Python面试知识点小结

    一.Python基础 1.Python语言特性: 动态型(运行期确定类型,静态型是编译型确定类型),强类型(不发生隐式转换,弱类型,如PHP,JavaScript就会发生隐患式转换) 2.Python ...

  5. 面试中常用排序算法的python实现和性能分析

    这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,我都尽可能的用大白话 ...

  6. Python 优化第一步: 性能分析实践 使用cporfile+gprof2dot可视化

    拿来主义: python -m cProfile -o profile.pstats to_profile.py gprof2dot -f pstats profile.pstats |dot -Tp ...

  7. Python性能分析与优化PDF高清完整版免费下载|百度云盘

    百度云盘|Python性能分析与优化PDF高清完整版免费下载 提取码:ubjt 内容简介 全面掌握Python代码性能分析和优化方法,消除性能瓶颈,迅速改善程序性能! 对于Python程序员来说,仅仅 ...

  8. 常用排序算法的python实现和性能分析

    常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...

  9. 【Python】常用排序算法的python实现和性能分析

    作者:waterxi 原文链接 背景 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试题整 ...

随机推荐

  1. R3 x64枚举进程句柄

    转载:https://blog.csdn.net/zhuhuibeishadiao/article/details/51292608 需要注意的是:在R3使用ZwQueryObject很容易锁死,需要 ...

  2. 64位CreateProcess逆向:(二)0环下参数的整合即创建进程的整体流程

    转载:https://bbs.pediy.com/thread-207683.htm 点击下面进入总目录: 64位Windows创建64位进程逆向分析(总目录) 在上一篇文章中,我们介绍了Create ...

  3. 【Java】Spring之基于注释的容器配置(四)

    注释是否比配置Spring的XML更好? 基于注释的配置的引入引发了这种方法是否比XML“更好”的问题.答案是每种方法都有其优点和缺点,通常,由开发人员决定哪种策略更适合他们.由于它们的定义方式,注释 ...

  4. function的json对象转换字符串与字符串转换为对象的方法

    // json对象转换成字符串var str = JSON.stringify(json, function(key, val) { if (typeof val === 'function') { ...

  5. [LeetCode] 127. Word Ladder 单词阶梯

    Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest t ...

  6. [LeetCode] 639. Decode Ways II 解码方法 II

    A message containing letters from A-Z is being encoded to numbers using the following mapping way: ' ...

  7. 消息发送函数OSMboxPostOpt()

    消息发送函数OSMboxPostOpt() 作用,ucos 3中的消息邮箱,具有广播功能,发送一条消息就可以使所有等待该消息的任务进入就绪状态,从而完成消息分发功能,具有一个消息唤醒多个任务的机制.

  8. consul ACL 配置范例

    service "dashboard" { policy = "write" } service "dashboard-sidecar-proxy&q ...

  9. 【视频开发】ffmpeg实现dxva2硬件加速

    这几天在做dxva2硬件加速,找不到什么资料,翻译了一下微软的两篇相关文档.这是第二篇,记录用ffmpeg实现dxva2. 第一篇翻译的Direct3D device manager,链接:http: ...

  10. vue-cli3 中console.log报错

    Module Warning (from ./node_modules/eslint-loader/index.js):error: Unexpected console statement (no- ...