计算几何板子题(我才没有拷板子的说……)

众所周知,三角形的重心坐标是\((\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})\)

然后我们发现如果我们有一个点集\(P=\{\vec a+\vec b+\vec c|\vec a\in A,\vec b \in B,\vec c\in C\}\),那么就可以直接查询\((3\times x_,3\times y)\)在不在这个点集里得到答案

其实这样的点集在计算几何上是有名字的,就是传说中的闵可夫斯基和

通俗地讲,点集\(A,B\)的闵可夫斯基和就是:从原点向\(A\)内部的每一个点做向量,将\(B\)沿每个向量移动,所有的最终位置的并

然后我们考虑凸包的闵可夫斯基和,手玩一下就会发现它的边是由原来凸包的边构成的

也就是说把两凸包的边极角排序后直接顺次连起来就是闵可夫斯基和,那么我们求的时候直接归并排序即可(凸包已经有序了)

所以这题就做完了,点在凸包内可以直接搞一个点作为原点,然后二分找极角最接近的边判断

坑点1:可能出现三点共线的情况,因此要扔回去再求一遍凸包

坑点2:极角排序的时候注意三点共线

坑点3:如果找到的极角最接近的边已经到最大的一条了,那么请考虑共线的情况

CODE

#include<cstdio>
#include<algorithm>
#define RI register LL
#define CI const LL&
using namespace std;
typedef long long LL;
const LL N=1000005;
struct Point
{
LL x,y;
inline Point(LL X=0,LL Y=0)
{
x=X; y=Y;
}
inline friend bool operator ==(const Point& A,const Point& B)
{
return A.x==B.x&&A.y==B.y;
}
}A[N],B[N],C[N],stack[N*3],t[N*3],p,st; LL n,m,k,q,num;
typedef Point Vector;
inline LL Cross(const Vector& A,const Vector& B)
{
return A.x*B.y-A.y*B.x;
}
inline LL Dot(const Vector& A,const Vector& B)
{
return A.x*B.x+A.y*B.y;
}
inline Point operator +(const Point& A,const Point& B)
{
return Point(A.x+B.x,A.y+B.y);
}
inline Vector operator -(const Point& A,const Point& B)
{
return Vector(A.x-B.x,A.y-B.y);
}
inline Point operator *(const Point& A,CI v)
{
return Point(A.x*v,A.y*v);
}
inline bool cmp(const Point& A,const Point& B)
{
return A.x<B.x||(A.x==B.x&&A.y<B.y);
}
inline bool Ang_cmp(const Vector& A,const Vector& B)
{
return Cross(A,B)>0||(!Cross(A,B)&&Dot(A,A)<Dot(B,B));
}
class Computation_Geometry
{
private:
Vector va[N],vb[N];
public:
inline LL ConvexHull(Point *a,int n)
{
sort(a+1,a+n+1,cmp); n=unique(a+1,a+n+1)-a-1;
RI i,top=0; for (i=1;i<=n;++i)
{
while (top>1&&Cross(stack[top]-stack[top-1],a[i]-stack[top])<=0) --top;
stack[++top]=a[i];
}
LL temp=top; for (i=n-1;i;--i)
{
while (top>temp&&Cross(stack[top]-stack[top-1],a[i]-stack[top])<=0) --top;
stack[++top]=a[i];
}
if (n>1) --top; for (i=1;i<=top;++i) a[i]=stack[i]; return a[top+1]=a[1],top;
}
inline LL Minkowski_Sum(Point *a,CI n,Point *b,CI m)
{
RI i,tot; for (i=1;i<n;++i) va[i]=a[i+1]-a[i]; va[n]=a[1]-a[n];
for (i=1;i<m;++i) vb[i]=b[i+1]-b[i]; vb[m]=b[1]-b[m]; t[tot=1]=a[1]+b[1];
RI pa=1,pb=1; while (pa<=n&&pb<=m) ++tot,t[tot]=t[tot-1]+(Cross(va[pa],vb[pb])>=0?va[pa++]:vb[pb++]);
while (pa<=n) ++tot,t[tot]=t[tot-1]+va[pa++]; while (pb<=m) ++tot,t[tot]=t[tot-1]+vb[pb++]; return tot;
}
inline bool IsPointInConvexHull(Point *a,CI n,const Point& p)
{
if (Cross(p,a[1])>0||Cross(a[n],p)>0) return 0;
LL pos=lower_bound(a+1,a+n+1,p,Ang_cmp)-t-1;
if (pos==n) return Dot(p,p)<=Dot(a[n],a[n]);
return Cross(p-a[pos],a[pos%n+1]-a[pos])<=0;
}
}G;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (scanf("%lld",&n),i=1;i<=n;++i) scanf("%lld%lld",&A[i].x,&A[i].y);
for (scanf("%lld",&m),i=1;i<=m;++i) scanf("%lld%lld",&B[i].x,&B[i].y);
for (scanf("%lld",&k),i=1;i<=k;++i) scanf("%lld%lld",&C[i].x,&C[i].y);
n=G.ConvexHull(A,n); m=G.ConvexHull(B,m); k=G.ConvexHull(C,k);
num=G.Minkowski_Sum(A,n,B,m); num=G.ConvexHull(t,num);
num=G.Minkowski_Sum(C,k,t,num); num=G.ConvexHull(t,num);
//for (i=1;i<=num;++i) printf("%lld %lld\n",t[i].x,t[i].y);
for (st=t[1],i=1;i<=num;++i) t[i]=t[i]-st; num=G.ConvexHull(t,num);
for (scanf("%lld",&q),i=1;i<=q;++i)
scanf("%lld%lld",&p.x,&p.y),puts(G.IsPointInConvexHull(t,num,(p*3)-st)?"YES":"NO");
return 0;
}

关于闵可夫斯基和,还有一道有关的题目(竟然老早就做掉了233):JSOI2018]战争 还需要一个小小的转换

HHHOJ #151. 「NOI模拟 #2」Nagisa的更多相关文章

  1. HHHOJ #153. 「NOI模拟 #2」Kotomi

    抽代的成分远远大于OI的成分 首先把一个点定为原点,然后我们发现如果我们不旋转此时答案就是所有位置的\(\gcd\) 如果要选择怎么办,我们考虑把我们选定的网格边连同方向和大小看做单位向量\(\vec ...

  2. Solution -「NOI 模拟赛」彩色挂饰

    \(\mathcal{Description}\)   给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,设图中最大点双的大小为 \(s\),则保证 \(s\le6\).你将要用 \(k\) ...

  3. Solution -「NOI 模拟赛」出题人

    \(\mathcal{Description}\)   给定 \(\{a_n\}\),求一个 \(\{b_{n-1}\}\),使得 \(\forall x\in\{a_n\},\exists i,j\ ...

  4. 「CSP-S模拟赛」2019第四场

    「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQO ...

  5. 「NOI十联测」深邃

    「NOI十联测」深邃 要使得最大的连通块最小,显然先二分答案. 先固定1结点为根. 对于一个果实,显然是先处理子树中未分配的点,再向外延伸. 每个结点记录一个\(si[]\),表示子树中未分配的点数, ...

  6. 「NOI十联测」奥义商店

    「NOI十联测」奥义商店 若lzz想花费最少的钱,那么显然要选择数目较少的颜色. 先考虑暴力的写法. 每次向两边统计,每个物品要求被买的概率可以由上一个物品推出. now=1;//now 被买概率 M ...

  7. 「NOI十联测」黑暗

    「NOI十联测」黑暗 \(n\) 个点的无向图,每条边都可能存在,一个图的权值是连通块个数的 \(m\) 次方,求所有可能的图的权值和.(n≤30000,m≤15) 令\(ans[n][m]\)为n个 ...

  8. 「CSP-S模拟赛」2019第三场

    目录 T1 「POI2007」山峰和山谷 Ridges and Valleys 题目 考场思路(几近正解) 正解 T2 「JOI 2013 Final」 现代豪宅 题目 考场思路(正解) T3 「SC ...

  9. 【模拟】HHHOJ#251. 「NOIP模拟赛 伍」高精度

    积累模拟经验 题目描述 维护一个二进制数,支持如下操作 "+" 该数加 11 "-" 该数减 11 "*" 该数乘 22 "\&q ...

随机推荐

  1. intent 参数的规范

    对于采用 intent 参数的 Activity Manager 命令,您可以使用以下选项指定 intent: -a action 指定 intent 操作,如“android.intent.acti ...

  2. 基于python的图像傅里叶处理

    import numpy as npimport matplotlib.pyplot as plt x = np.linspace(-10, 10, 1000)a = np.cos(x)b = a + ...

  3. 2019 草花手游java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.草花手游等公司offer,岗位是Java后端开发,因为发展原因最终选择去了草花手游,入职一年时间了,也成为了面 ...

  4. 【转载】Jupyter Notebook 常用快捷键

    原文:http://blog.csdn.net/lawme/article/details/51034543 Jupyter Notebook 有两种键盘输入模式.编辑模式,允许你往单元中键入代码或文 ...

  5. 2019-07-29 ThinkPHP简单的增删改查

    在model里面,建立表名Model.class.php的控制器,用以连接数据表,代码如下 namespace Home\Model; use Think\Model; class NewsModel ...

  6. mybatis关联映射一对多

    实际项目中也存在很多的一对多的情况,下面看看这个简单的例子 table.sql CREATE TABLE tb_clazz( id INT PRIMARY KEY AUTO_INCREMENT, CO ...

  7. pandas-19 DataFrame读取写入文件的方法

    pandas-19 DataFrame读取写入文件的方法 DataFrame有非常丰富的IO方法,比如DataFrame读写csv文件excel文件等等,操作很简单.下面在代码中标记出来一些常用的读写 ...

  8. 如何使用Python的Django框架创建自己的网站

    如何使用Python的Django框架创建自己的网站 Django建站主要分四步:1.创建Django项目,2.将网页模板移植到Django项目中,3.数据交互,4.数据库 1创建Django项目 本 ...

  9. Android图像滤镜框架GPUImage从配置到应用

    GPUImage简介 GPUImage 是iOS下一个开源的基于GPU的图像处理库,提供各种各样的图像处理滤镜,并且支持照相机和摄像机的实时滤镜.GPUImage for Android是它在Andr ...

  10. Android Handler类 发送消息-post()和postDelay(), Looper讲解

    https://blog.csdn.net/weixin_41101173/article/details/79701832 首先,post和postDelay都是Handler的方法,用以在子线程中 ...