Python进阶:生成器--懒人版本的迭代器
从容器、可迭代对象谈起
所有的容器都是可迭代的(iterable),迭代器提供了一个next方法。iter()返回一个迭代器,通过next()函数可以实现遍历。
def is_iterable(param):
try:
iter(param)
return True
except TypeError:
return False params = [
1234,
'',
[1, 2, 3, 4],
set([1, 2, 3, 4]),
{1:1, 2:2, 3:3, 4:4},
(1, 2, 3, 4)
] for param in params:
print('{} is iterable? {}'.format(param, is_iterable(param))) ########## 输出 ########## # 1234 is iterable? False
# 1234 is iterable? True
# [1, 2, 3, 4] is iterable? True
# {1, 2, 3, 4} is iterable? True
# {1: 1, 2: 2, 3: 3, 4: 4} is iterable? True
# (1, 2, 3, 4) is iterable? True
生成器是什么
生成器是懒人版本的迭代器。例:
import os
import psutil #显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid) info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory)) def test_iterator():
show_memory_info('initing iterator')
list_1 = [i for i in range(100000000)]
show_memory_info('after iterator initiated')
print(sum(list_1))
show_memory_info('after sum called') def test_generator():
show_memory_info('initing generator')
list_2 = (i for i in range(100000000))
show_memory_info('after generator initiated')
print(sum(list_2))
show_memory_info('after sum called') test_iterator()
test_generator()
%time test_iterator()
%time test_generator() ######### 输出 ########## initing iterator memory used: 48.9765625 MB
after iterator initiated memory used: 3920.30078125 MB
4999999950000000
after sum called memory used: 3920.3046875 MB
Wall time: 17 s
initing generator memory used: 50.359375 MB
after generator initiated memory used: 50.359375 MB
4999999950000000
after sum called memory used: 50.109375 MB
Wall time: 12.5 s
生成器能玩啥花样
数学中有一个恒等式,(1 + 2 + 3 + ... + n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3,用以下代码表达
def generator(k):
i = 1
while True:
yield i ** k
i += 1 gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1)
print(gen_3) def get_sum(n):
sum_1, sum_3 = 0, 0
for i in range(n):
next_1 = next(gen_1)
next_3 = next(gen_3)
print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
sum_1 += next_1
sum_3 += next_3
print(sum_1 * sum_1, sum_3) get_sum(8) ########## 输出 ########## # <generator object generator at 0x000001E70651C4F8>
# <generator object generator at 0x000001E70651C390>
# next_1 = 1, next_3 = 1
# next_1 = 2, next_3 = 8
# next_1 = 3, next_3 = 27
# next_1 = 4, next_3 = 64
# next_1 = 5, next_3 = 125
# next_1 = 6, next_3 = 216
# next_1 = 7, next_3 = 343
# next_1 = 8, next_3 = 512
# 1296 1296
generator()这个函数,它返回了一个生成器,当运行到yield i ** k时,暂停并把i ** k作为next()的返回值。每次调用next(gen)时,暂停的程序会启动并往下执行,而且i的值也会被记住,继续累加,最后next_1为8,next_3为512.
#常规写法
def index_normal(L, target):
result = []
for i, num in enumerate(L):
if num == target:
result.append(i)
return result print(index_normal([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2)) ########## 输出 ########## [2, 5, 9] #生成器写法
def index_generator(L, target):
for i, num in enumerate(L):
if num == target:
yield i print(list(index_generator([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2))) ######### 输出 ########## [2, 5, 9]
再看一例子:
def is_subsequence(a, b):
b = iter(b)
return all(i in b for i in a) print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5])) ######### 输出 ########## True
False
下面代码为上面代码的演化版本
def is_subsequence(a, b):
b = iter(b)
print(b) gen = (i for i in a)
print(gen) for i in gen:
print(i) gen = ((i in b) for i in a)
print(gen) for i in gen:
print(i) return all(((i in b) for i in a)) print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5])) ########## 输出 ########## # <list_iterator object at 0x000001E7063D0E80>
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570>
#
#
#
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8>
# True
# True
# True
# False
# <list_iterator object at 0x000001E7063D0D30>
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8>
#
#
#
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570>
# True
# True
# False
# False
首先iter(b)把b转为迭代器。目的是内部实现next函数,(i for i in a) 会产生一个生成器 ,同样((i in b) for i in a)也是。然后(i in b)等阶于:
while True:
val = next(b)
if val == i:
yield True
这里非常巧妙地利用生成器的特性,next()函数运行的时候,保存了当前的指针。比如下面这个示例
b = (i for i in range(5)) print(2 in b)
print(4 in b)
print(3 in b) ########## 输出 ########## True
True
False
参考
极客时间《Python核心技术与实战》专栏
Python进阶:生成器--懒人版本的迭代器的更多相关文章
- Python进阶【第八篇】迭代器和生成器
一.何谓迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration).迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代 ...
- 2019-02-02 Python学习——生成器杨辉三角,迭代器与可迭代对象的区别
练习 杨辉三角定义如下: 1 / \ 1 1 / \ / \ 1 2 1 / \ / \ / \ 1 3 3 1 / \ / \ / \ / \ 1 4 6 4 1 / \ / \ / \ / \ / ...
- python 进阶篇 迭代器和生成器深入理解
列表/元组/字典/集合都是容器.对于容器,可以很直观地想象成多个元素在一起的单元:而不同容器的区别,正是在于内部数据结构的实现方法. 所有的容器都是可迭代的(iterable).另外字符串也可以被迭代 ...
- Python进阶之迭代器和生成器
可迭代对象 Python中任意的对象,只要它定义了可以返回一个迭代器的__iter__方法,或者定义了可以支持下标索引的__getitem__方法,那么它就是一个可迭代对象.简单来说,可迭代对象就是能 ...
- Python进阶内容(四)--- 迭代器(Iterator)与生成器(Generator)
迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...
- Python进阶-V 迭代器(Iterator)、生成器(Generator)函数
一.迭代器 1.可循环的有哪些,即可用for语句或者while语句的数据类型有哪些? 字符串(str).列表(list).元组(tuple).字典(dic).集合(set).枚举类(enumerate ...
- Python核心编程的四大神兽:迭代器、生成器、闭包以及装饰器
生成器 生成器是生成一个值的特殊函数,它具有这样的特点:第一次执行该函数时,先从头按顺序执行,在碰到yield关键字时该函数会暂停执行该函数后续的代码,并且返回一个值:在下一次调用该函数执行时,程 ...
- Python菜鸟之路:Python基础-生成器和迭代器、递归
一.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,知道所有的元素被访问完结束.迭代器只能往前不会后退. 1. 迭代器优点 对于无法随机访问的数据结构(比如set)而言, ...
- Python进阶(四)----生成器、列表推导式、生成器推导式、匿名函数和内置函数
Python进阶(四)----生成器.列表推导式.生成器推导式.匿名函数和内置函数 一丶生成器 本质: 就是迭代器 生成器产生的方式: 1.生成器函数
随机推荐
- 2019秋季 关于C语言指针等探索
C语言指针探索 本篇博客由学生所写,如有错误之处,请在评论区留言 1.输出指针所储存的地址,使指针间接访问所储存地址的内容 #include <stdio.h> int main(void ...
- HttpWebRequest Timeout
随着REST风格的流行,直接通过 HttpWebRequest 进行服务调用的客户端应用越来越多.这里总结一些可能需要费时调查的经验,希望能帮助大家. 1. 用完的HttpWebRequest要Abo ...
- iTop汉化
- 前端速查手册——Note
目录 自定义弹框(模块框) HTML5新增标签 HTML5新增属性 自定义弹框(模块框) HTML <div style="display:none" id="mo ...
- 123457123456#2#----com.ppGame.XueYingYu76--前拼后广--儿童英语_pp
com.ppGame.XueYingYu76--前拼后广--儿童英语_pp
- lombok 插件安装使用
Lombok是一个Java库,它自动插入编辑器并构建工具,为Java添加香料.永远不要再编写另一个getter或Eques方法,您的类有一个功能齐全的构建器,可以自动化您的日志变量以及更多的注释. 官 ...
- Redis项目实战
1.显示最新的项目列表 下面这个语句常用来显示最新项目,随着数据多了,查询毫无疑问会越来越慢. SELECT * FROM foo WHERE ... ORDER BY time DESC LIMIT ...
- [Log4j使用教程] JavaSE/JavaEE/SpringMVC中使用Log4j
要想使用Log4j, 首先需要下载到Log4j的jar, Download: http://www.apache.org/dyn/closer.cgi/logging/log4j/1.2.17/log ...
- Python3 IO编程之序列化
在程序运行的过程中,所有变量都是在内存中,比如定义一个dict >>> d=dict(name='Box',age=20,score=11) 可以随时修改变量,比如把'name'改成 ...
- MyBatisCodeHelper-Pro插件相关
参考 https://zhile.io/2019/04/23/mybatis-code-helper-pro-crack.html