[HAOI2015]树上操作 题解
题目描述
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:
- 操作 1 :把某个节点 x 的点权增加 a 。
- 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
- 操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
输入格式
第一行包含两个整数 N, M 。表示点数和操作数。
接下来一行 N 个整数,表示树中节点的初始权值。
接下来 N-1 行每行两个正整数 from, to , 表示该树中存在一条边 (from, to) 。
再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
输出格式
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
输入输出样例
5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
6
9
13
说明/提示
对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。
一道树链剖分模板题。。。,比洛谷树链剖分模板题还简单
【模板】树链剖分需要支持路径修改,子树修改,子树查询和路径查询
这道题只需要支持单点修改,子树修改和路径查询,而且路径的左端点还固定为1,其实这道题应该是蓝题的。。。
哦对了,重要的事情说三遍:
开long long,开long long,开long long
不会树链剖分的小伙伴可以参考以下博客
想联系树链剖分的同学们也可以参考以下题目
好了废话不多数,放代码吧
代码如下:
#include<bits/stdc++.h>
using namespace std;
struct SYM{
int to,next;
}edge[];
struct ASJ{
long long sum;
long long lz;
}tree[];
int head[],tot;
int n,m;
int w[],dep[],fa[],son[],siz[],top[],wet[],id[];
void addedge(int x,int y){
edge[++tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
}
void build(int i,int l,int r){ //建树
if(l==r){
tree[i].sum=wet[l];
return ;
}
int mid=(l+r)/;
build(*i,l,mid); //左儿子
build(*i+,mid+,r); //右儿子
tree[i].sum=(tree[*i].sum+tree[*i+].sum);
}
void pushdown(int i,long long len){ //LAZY下传
tree[*i].lz+=tree[i].lz;
tree[*i+].lz+=tree[i].lz;
tree[*i].sum+=(tree[i].lz*(len-len/));
tree[*i+].sum+=(tree[i].lz*(len/));
tree[i].lz=; //别忘了清零
}
void update(int i,int l,int r,int L,int R,long long k){//更新操作
if(l>=L&&r<=R){
tree[i].sum+=k*(r-l+);
tree[i].lz+=k;
return ;
}
int mid=(l+r)/;
pushdown(i,(r-l+)); //下传LAZY
if(L<=mid) update(*i,l,mid,L,R,k);
if(R>mid) update(*i+,mid+,r,L,R,k);
tree[i].sum=tree[*i].sum+tree[*i+].sum;
}
long long query(int i,int l,int r,int L,int R){//查询操作
long long ans=;
if(l>=L&&r<=R){
return tree[i].sum;
}
int mid=(l+r)/;
pushdown(i,(r-l+));
if(L<=mid) ans+=query(*i,l,mid,L,R);
if(R>=mid+) ans+=query(*i+,mid+,r,L,R);
return ans;
}
//----------------------------------------------------------------上面是线段树
void dfs1(int now,int from){ //处理dep,fa,siz,以及重儿子son
dep[now]=dep[from]+;
fa[now]=from;
int maxson=-;
siz[now]=;
for(int i=head[now];i;i=edge[i].next){
int v=edge[i].to;
if(v==from) continue;
dfs1(v,now);
siz[now]+=siz[v];
if(siz[v]>maxson){
son[now]=v;
maxson=siz[v];
}
}
}
int cnt;
void dfs2(int now,int topr){ //处理重链链顶top,新点id,新点权值wet
id[now]=++cnt;
top[now]=topr;
wet[cnt]=w[now];
if(!son[now]) return;
dfs2(son[now],topr); //先处理重儿子,再处理轻儿子
for(int i=head[now];i;i=edge[i].next){
int v=edge[i].to;
if(v==fa[now]||v==son[now]) continue;
dfs2(v,v); //每个轻儿子都是一个新的链顶,别忘了换链顶!!!
}
}
void update1(int x,int k){
update(,,n,id[x],id[x]+siz[x]-,k); //子树是连续的所以左节点id[x],右节点id[x]+siz[x]-1
}
long long q1(int x,int y){ //这里我写的有点麻烦,因为一个点固定为根1,所以其实可以省略一些,不过这里的代码是可以应用于每一个树链剖分路经查询的
long long ans=;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans+=query(,,n,id[top[x]],id[x]);
x=fa[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans+=query(,,n,id[x],id[y]);
return ans;
}
int main(){
freopen("sscz.in","r",stdin);
freopen("sscz.out","w",stdout);
int no,x,y;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
for(int i=;i<n;i++){
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
}
dfs1(,);
dfs2(,);
build(,,n);
while(m--){
scanf("%d",&no);
if(no==){
scanf("%d%d",&x,&y);
update(,,n,id[x],id[x],y); //单点修改
}
if(no==){
scanf("%d%d",&x,&y); //子树修改
update1(x,y);
}
if(no==){ //路径查询
scanf("%d",&x);
printf("%lld\n",q1(x,));
}
}
}
[HAOI2015]树上操作 题解的更多相关文章
- BZOJ4034:[HAOI2015]树上操作——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=4034 https://www.luogu.org/problemnew/show/P3178 有一棵 ...
- 洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P3178 这道题目是一道树链剖分的模板题. 但是在解决这道问题的同事刷新了我的两个认识: 第一个认识是:树链剖分不光可以处理链, ...
- 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树
[BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...
- 树剖||树链剖分||线段树||BZOJ4034||Luogu3178||[HAOI2015]树上操作
题面:P3178 [HAOI2015]树上操作 好像其他人都嫌这道题太容易了懒得讲,好吧那我讲. 题解:第一个操作和第二个操作本质上是一样的,所以可以合并.唯一值得讲的点就是:第二个操作要求把某个节点 ...
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- [BZOJ]4034: [HAOI2015]树上操作
[HAOI2015]树上操作 传送门 题目大意:三个操作 1:a,b,c b节点权值+c 2:a,b,c 以b为根的子树节点权值全部+c 3:a,b 查询b到根路径的权值和. 题解:树链剖分 操作1 ...
- bzoj4034: [HAOI2015]树上操作(树剖)
4034: [HAOI2015]树上操作 题目:传送门 题解: 树剖裸题: 麻烦一点的就只有子树修改(其实一点也不),因为子树编号连续啊,直接改段(记录编号最小和最大) 开个long long 水模版 ...
- HAOI2015 树上操作
HAOI2015 树上操作 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根 ...
- bzoj千题计划242:bzoj4034: [HAOI2015]树上操作
http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...
随机推荐
- LeetCode 930. Binary Subarrays With Sum
原题链接在这里:https://leetcode.com/problems/binary-subarrays-with-sum/ 题目: In an array A of 0s and 1s, how ...
- 验证符号文件的又一方法(!itoldyouso)
如果您正在开发软件,很可能遇到了“不匹配的PDB”调试器错误.当您将调试器指向错误的符号路径时,通常会发生这种情况. 但有时你确信你所指向的符号是正确的符号,这让你想知道为什么调试器认为这些符号不匹配 ...
- graphql-inspector graphql schema比较&&文档校验&&查找破坏性变动工具
graphql-inspector 是一个方便的graphql 周边工具,可以加速graphql 应该的开发,同时可以帮助我们排查问题 包含以下特性: 进行schema 的比较 文档校验(通过sche ...
- php7 configure: error: Cannot find OpenSSL's <evp.h> 问题解决
开始以为是没有安装openssl, openssl-devel,安装后发现还是提示这个错误,搜索了一下evp.h,这个文件也存在.GOOGLE 了一下,在stackoverflow,找到了答案,原来是 ...
- 【loj3120】【CTS2019】珍珠
题目 $laofu $出的题 \(n\)个离散型随机变量\(X_i\)可能的值为\([1,D]\) ,求有至少\(m\)对的概率 $0 \le m \le 10^9 , 1 \le n ...
- manjaro web
https://wiki.manjaro.org/index.php?title=Main_Page https://forum.manjaro.org/ https://gitlab.manjaro ...
- Linux下的nexus数据迁移
刚到公司没多久,目前公司有两个项目公用一个nexus的maven私服,现在想把两个私服的jar包拆分开: 我在原私服的nexus服务器中, 1.备份原nexus使用命令 完成tar包的压缩 打包完毕后 ...
- skywalking6.3.0安装(centos7.6)
先安装好jdk8(略),经测试高于jdk8不支持. http://skywalking.apache.org/downloads/wget --no-check-certificate --no-co ...
- Xamarin图表开发基础教程(12)OxyPlot框架支持的金融图表类型
Xamarin图表开发基础教程(12)OxyPlot框架支持的金融图表类型 OxyPlot组件中支持5种类型的金融图表,它们分别为销量图.高低图.股票K线图.股票走势图和旧式股票图,如图1.20~1. ...
- SNP功能注释网站合集
这篇文章是对SNP位点功能注释在线网站的一个总结帖. 软件排名不分先后,优先顺序可以看推荐指数. 彩蛋在最后,请坚持看完 1.GWAS4D, 推荐指数:**** 网址:http://mulinlab. ...