3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 947  Solved: 542
[Submit][Status][Discuss]

Description

背景

小P是个特么喜欢玩MC的孩纸。。。

描述

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9
 
 
 
【题解】
 
f[i]表示前i个牧场被控制的最小代价,sumb表示b数组的前缀和,sumkb表示 b[i]*i 的前缀和
 
则状态转移方程:f[i]=min{f[j]+a[i]+i*(sumb[i]-sumb[j])-(sumkb[i]-sumkb[j])}  (1<=j<i)
 
设j<k,且从k转移到i比j更优。
 
得斜率表达式:[(f[j]-sumkb[j])-(f[k]-sumkb[k])]/(sumb[j]-sumb[k])>i
 
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define FILE "read"
#define MAXN 1000100
#define up(i,j,n) for(ll i=j;i<=n;i++)
namespace INIT{
char buf[<<],*fs,*ft;
inline char getc(){return (fs==ft&&(ft=(fs=buf)+fread(buf,,<<,stdin),fs==ft))?:*fs++;}
inline ll read(){
ll x=,f=; char ch=getc();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getc();}
while(isdigit(ch)) {x=x*+ch-''; ch=getc();}
return x*f;
}
}using namespace INIT;
ll n,head,tail,a[MAXN],b[MAXN],sumb[MAXN],sumkb[MAXN],q[MAXN],f[MAXN];
void init(){
n=read();
up(i,,n) a[i]=read();
up(i,,n) b[i]=read(),sumb[i]=sumb[i-]+b[i],sumkb[i]=sumkb[i-]+b[i]*i;
}
inline double slop(ll j,ll k) {return (double)((f[j]+sumkb[j])-(f[k]+sumkb[k]))/(double)(sumb[j]-sumb[k]);}
void solve(){
up(i,,n){
while(head<tail&&slop(q[head],q[head+])<i) head++;
ll t=q[head];
f[i]=f[t]+a[i]+i*(sumb[i]-sumb[t])-(sumkb[i]-sumkb[t]);
while(head<tail&&slop(q[tail-],q[tail])>slop(q[tail],i)) tail--;
q[++tail]=i;
}
printf("%lld\n",f[n]);
}
int main(){
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
init();
solve();
return ;
}
 
 

【bzoj3437】小P的牧场的更多相关文章

  1. bzoj3437小P的牧场

    bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...

  2. bzoj3437 小P的牧场(斜率优化dp)

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2025  Solved: 1110[Submit][Status][Discu ...

  3. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  4. BZOJ3437 小P的牧场 【斜率优化dp】

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1502  Solved: 836 [Submit][Status][Disc ...

  5. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  6. BZOJ3437 小P的牧场 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...

  7. bzoj3437 小P的牧场

    斜率优化dp 代码 #include<cstdio> #include<algorithm> using namespace std; typedef long long ll ...

  8. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  9. 【BZOJ3437】小P的牧场(动态规划,斜率优化)

    [BZOJ3437]小P的牧场(动态规划,斜率优化) 题面 BZOJ 题解 考虑暴力\(dp\),设\(f[i]\)表示强制在\(i\)处建立控制站的并控制\([1..i]\)的最小代价. 很显然,枚 ...

  10. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

随机推荐

  1. New Concept English Two 26 70

    $课文68  纠缠不休 712. I crossed the street to avoid meeting him, but he saw me and came running towards m ...

  2. winform messagebox 统一

    vb.net 里面有两种messagebox,一种是vb语言提供的msgbox,另一种是.net framework 提供的messagebox.在此统一使用messagebox. Warning,提 ...

  3. windows 下键盘映射

    HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Keyboard Layout下添加二进制键 Scancode Map完后注销后即可生效

  4. Vue3.0代理的设置

    1.在主目录下创建vue.config.js 内容如下: const path = require('path'); function resolve (dir) { return path.join ...

  5. 《DSP using MATLAB》Problem 2.6

    1.代码 %% ------------------------------------------------------------------------ %% Output Info abou ...

  6. 转 How do GraphQL remote schemas work

    文章转自 prisma 官方博客,写的很不错 In this article, we want to understand how we can use any existing GraphQL AP ...

  7. Install LAMP Server (Apache, MariaDB, PHP) On CentOS/RHEL/Scientific Linux 7

    Install LAMP Server (Apache, MariaDB, PHP) On CentOS/RHEL/Scientific Linux 7 By SK  - August 12, 201 ...

  8. oracle 归档日志总结

    Oracle 归档模式和非归档模式 归档模式和非归档模式 在DBA部署数据库之初,必须要做出的最重要决定之一就是选择归档模式(ARCHIVELOG)或者非 归档模式(NOARCHIVELOG )下运行 ...

  9. 中兴 F412 超级帐号telecomadmin破解(适用2015版h啊RowCount="0") TEWA-300AI EPON TEWA-500AI EPON破解

    1.telnet 192.168.1.1 root/Zte521    有些密码也是root 2.输入sendcmd 1 DB p UserInfo 老本大多数教程会返回超级管理员帐号密码: < ...

  10. EasyUI使用小常识

    datagrid:1 //显示某列 $('#ListTable').datagrid('showColumn', 'ExRate'); //隐藏某列 $('#ListTable').datagrid( ...