【SPOJ】QTREE6(Link-Cut-Tree)

题面

Vjudge

题解

很神奇的一道题目

我们发现点有黑白两种,又是动态加边/删边

不难想到\(LCT\)

最爆力的做法,显然是每次修改单点颜色的时候

暴力修改当前点和它的父亲以及儿子之间的连边状态

但是这样显然是假的(菊花树了解一下)

怎么优化呢?

对于每次操作,我们考虑如何只修改一次。

对于树上的一个结点,如果只修改一次,显然是修改和其父亲的状态。

那么,我们在考虑\(LCT\)的连边操作的时候,

如果当前点变色,那么就只修改和它父亲的连边。

这样怎么算答案呢?

如果我们确定树是一棵有根树

那么,我们只需要找到当前点深度最浅的父亲

这个父亲在当前颜色的树上的儿子个数显然就是答案

所以,我们只需要每次只修改当前点和其父亲的关系就行了。

但是要注意一个问题,因为强制是有根树了。

所以打死都不能有\(makeroot\)操作

所以\(link,cut\)之类的都要魔改一发了。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
#define ls (t[x].ch[0])
#define rs (t[x].ch[1])
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
struct Link_Cut_Tree
{
struct Node
{
int ch[2],ff;
int size,sum;
int rev;
}t[MAX];
bool isroot(int x){return t[t[x].ff].ch[0]!=x&&t[t[x].ff].ch[1]!=x;}
void pushup(int x){t[x].sum=t[ls].sum+t[rs].sum+t[x].size+1;}
void rotate(int x)
{
int y=t[x].ff,z=t[y].ff;
int k=t[y].ch[1]==x;
if(!isroot(y))t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
void Splay(int x)
{
while(!isroot(x))
{
int y=t[x].ff,z=t[y].ff;
if(!isroot(y))
(t[y].ch[0]==x)^(t[z].ch[0]==y)?rotate(x):rotate(y);
rotate(x);
}
pushup(x);
}
void access(int x)
{
for(int y=0;x;y=x,x=t[x].ff)
{
Splay(x);t[x].size+=t[rs].sum-t[y].sum;
rs=y;pushup(x);
}
}
void link(int x,int y){if(!y)return;access(y);Splay(x);Splay(y);t[x].ff=y;t[y].size+=t[x].sum;pushup(y);}
void cut(int x,int y){if(!y)return;access(x);Splay(x);ls=t[ls].ff=0;pushup(x);}
int findroot(int x){access(x);Splay(x);while(ls)x=ls;Splay(x);return x;}
}LCT[2];
int n,m,fa[MAX],c[MAX];
void dfs(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
LCT[1].link(v,u);fa[v]=u;
dfs(v,u);
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)c[i]=1;
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
dfs(1,0);
m=read();
while(m--)
{
int opt=read(),x=read();
if(opt)LCT[c[x]].cut(x,fa[x]),c[x]^=1,LCT[c[x]].link(x,fa[x]);
else
{
LCT[c[x]].access(x);
int ff=LCT[c[x]].findroot(x);
if(c[ff]==c[x])printf("%d\n",LCT[c[x]].t[ff].sum);
else printf("%d\n",LCT[c[x]].t[LCT[c[x]].t[ff].ch[1]].sum);
}
}
return 0;
}

【SPOJ】QTREE6(Link-Cut-Tree)的更多相关文章

  1. 【SPOJ】Highways(矩阵树定理)

    [SPOJ]Highways(矩阵树定理) 题面 Vjudge 洛谷 题解 矩阵树定理模板题 无向图的矩阵树定理: 对于一条边\((u,v)\),给邻接矩阵上\(G[u][v],G[v][u]\)加一 ...

  2. LCT(Link Cut Tree)总结

    概念.性质简述 首先介绍一下链剖分的概念链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度.目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分. ...

  3. 【SPOJ】QTREE7(Link-Cut Tree)

    [SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...

  4. 【SPOJ】Substrings(后缀自动机)

    [SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...

  5. 【CF487E】Tourists(圆方树)

    [CF487E]Tourists(圆方树) 题面 UOJ 题解 首先我们不考虑修改,再来想想这道题目. 我们既然要求的是最小值,那么,在经过一个点双的时候,走的一定是具有较小权值的那一侧. 所以说,我 ...

  6. 【CF17E】Palisection(回文树)

    [CF17E]Palisection(回文树) 题面 洛谷 题解 题意: 求有重叠部分的回文子串对的数量 所谓正难则反 求出所有不重叠的即可 求出以一个位置结束的回文串的数量 和以一个位置为开始的回文 ...

  7. 【BZOJ3160】万径人踪灭(FFT,Manacher)

    [BZOJ3160]万径人踪灭(FFT,Manacher) 题面 BZOJ 题解 很容易想到就是满足条件的子序列个数减去回文子串的个数吧... 至于满足条件的子序列 我们可以依次枚举对称轴 如果知道关 ...

  8. 【BZOJ3944】Sum(杜教筛)

    [BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...

  9. 【BZOJ3730】震波(动态点分治)

    [BZOJ3730]震波(动态点分治) 题面 BZOJ 题意 给定一棵树, 每次询问到一个点的距离\(<=K\)的点的权值之和 动态修改权值, 强制在线 题解 正常的\(DP\)??? 很简单呀 ...

随机推荐

  1. DataRow的RowState属性变化

    DataRow的RowState属性(状态)取值有5种:Detached, Unchanged, Added, Deleted, Modified. 当我们用DataRow newRow = Data ...

  2. CSP201403-3:命令行选项

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  3. 【python 3.6】调用另一个文件的类的方法

    文件1:test12.py 文件2:test13.py 文件1 如下: #!/usr/bin/python # -*- coding: utf-8 -*- ''' ''' class abcd(obj ...

  4. vs2017搭建linux c++开发环境

    最近一直在阅读ovs的源码,看到用户态代码的时候,需要对用户态的代码进行调试,一开始想直接使用linux中的GDB进行调试,但是ovs的工程太过于复杂,从网上找了些文章,发现vs2017能够支持lin ...

  5. JAVA学习笔记--正则表达式

    正则表达式是一种强大而灵活的文本处理工具.使用正则表达式,可以让我们以编程的方式构造复杂的文本,并对输入的字符串进行搜索. 一.基础正则表达式语法(表格来自J2SE6_API) 字符 x 字符 x \ ...

  6. 最短路径算法(I)

    弗洛伊德算法(Floyed-Warshall) 适用范围及时间复杂度 该算法的时间复杂度为O(N^3),适用于出现负边权的情况. 可以求取最短路径或判断路径是否连通.可用于求最小环,比较两点之间的大小 ...

  7. Cannot find class [org.springframework.http.converter.json.MappingJacksonHttpMessageConverter]

    <!--避免IE执行AJAX时,返回JSON出现下载文件 --> <bean id="mappingJacksonHttpMessageConverter" cl ...

  8. 关于jsp之间href传参(中文)乱码问题

    在A.jsp中有href传值 <a href=\"6.jsp?param="+rs.getString(2)+"\">" 在B.jsp中使 ...

  9. 【线段树求区间第一个不大于val的值】Lpl and Energy-saving Lamps

    https://nanti.jisuanke.com/t/30996 线段树维护区间最小值,查询的时候优先向左走,如果左边已经找到了,就不用再往右了. 一个房间装满则把权值标记为INF,模拟一遍,注意 ...

  10. OA_1界面

    <%@ page language="java" contentType="text/html;charset=GB18030" pageEncoding ...