http://poj.org/problem?id=1273

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

EK算法:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[][],n,m,v[],pre[];
int bfs(int s,int t)
{
queue<int>q;
q.push(s);
memset(pre,-,sizeof(pre));
memset(v,,sizeof(v));
pre[s]=s;
v[s]=;
while(!q.empty())
{
int w=q.front();
q.pop();
for(int i=; i<=n; i++)
{
if(map[w][i]&&!v[i])
{
pre[i]=w;
v[i]=;
if(i==t)
{
return ;
}
q.push(i);
}
}
}
return ;
}
void EK(int s,int t)
{
int ans=,minx;
while(bfs(s,t)==)
{
minx=inf;
for(int i=t; i!=s; i=pre[i])
{
minx=min(minx,map[pre[i]][i]);
}
for(int i=t; i!=s; i=pre[i])
{
map[pre[i]][i]-=minx;
map[i][pre[i]]+=minx;
}
ans+=minx;
}
printf("%d\n",ans);
return ;
}
int main()
{
int xx,yy,zz;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(map,,sizeof(map));
while(m--)
{
scanf("%d%d%d",&xx,&yy,&zz);
map[xx][yy]+=zz;
}
EK(,n);
}
return ;
}

dinic算法:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[][],dis[];
int m,n;
int bfs(int s,int t)
{
memset(dis,-,sizeof(dis));
dis[s]=;
queue<int>q;
q.push(s);
while(!q.empty())
{
int y=q.front();
q.pop();
for(int i=; i<=n; i++)
{
if(dis[i]==-&&map[y][i])
{
dis[i]=dis[y]+;
q.push(i);
}
}
}
if(dis[t]>) return ;
return ;
}
int dinic(int s,int maxt)
{
if(s==n) return maxt;
int a,sum=maxt;
for(int i=; i<=n&&sum; i++)
{
if(dis[i]==dis[s]+&&map[s][i]>)
{
a=dinic(i,min(sum,map[s][i]));
map[s][i]-=a;
map[i][s]+=a;
sum-=a;
}
}
return maxt-sum;
}
int main()
{
int x,y,z,ans;
while(scanf("%d%d",&m,&n)!=EOF)
{
ans=;
memset(map,,sizeof(map));
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
map[x][y]+=z;
}
while(bfs(,n)==)
{
ans+=dinic(,inf);
}
printf("%d\n",ans);
}
return ;
}

POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)的更多相关文章

  1. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  2. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  3. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  4. poj1273 Drainage Ditches (最大流板子

    网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...

  5. [poj1273]Drainage Ditches(最大流)

    解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...

  6. poj1273 Drainage Ditches Dinic最大流

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 76000   Accepted: 2953 ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  9. 2018.07.06 POJ1273 Drainage Ditches(最大流)

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Description Every time it rains on Farmer J ...

随机推荐

  1. cesium可视化空间数据1

    ---恢复内容开始--- 1.多边形 我们要从经度和纬度列表中为美国怀俄明州添加一个多边形.(怀俄明被选中是因为它是一个简单的多边形.)我们可以复制并粘贴以下代码到Sandcastle中:   < ...

  2. 未配置jdk环境变量,cmd环境能运行java -version命令

    我的情况是C:\Windows\System32路径下有java.exe.javaw.exe.javaws.exe三个文件,将三个文件删除后配置自己的jdk环境变量 可能原因参考帖子:https:// ...

  3. Linux curl 命令

    curl is a tool to transfer data from or to a server, using one of the supported protocols ( http ,ht ...

  4. callable()

    callable() 用于判断一个对象是否是可调用的,函数或类都可以被调用 In [1]: callable('a') Out[1]: False In [2]: def fun(): ...: pa ...

  5. Ubuntu13.10:[3]如何开启SSH SERVER服务

    作为最新版本的UBUNTU系统而言,开源,升级全部都不在话下.传说XP已经停止补丁更新了,使用UBUNTU也是一个很好的选择.ubuntu默认安装完成后只有ssh-agent(客户端模式),宾哥百度经 ...

  6. [Web Chart系列之六] canvas Chart 导出图文件

    前言 博主正在参加CSDN2013年度博客之星评选,如果这篇文章对您有用,请投他一票: 投票地址:http://vote.blog.csdn.net/blogstaritem/blogstar2013 ...

  7. android框架---->下沉文字Titanic的使用

    Titanic is a simple illusion obtained by applying an animated translation on the TextView TextPaint ...

  8. install kubernetes dashboard 安装 kubernetes dashboard 详细

    参考: http://www.bubuko.com/infodetail-2242562.html http://www.cnblogs.com/zhenyuyaodidiao/p/6500897.h ...

  9. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

  10. 手机联系人信息获取(contacts) ---- HTML5+

    模块:contacts Contacts模块管理系统通讯录,用于可对系统通讯录进行增.删.改.查等操作.通过plus.contacts获取系统通讯录管理对象. 对象:联系人对象(属性:电话,地址等)针 ...