http://poj.org/problem?id=1273

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

EK算法:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[][],n,m,v[],pre[];
int bfs(int s,int t)
{
queue<int>q;
q.push(s);
memset(pre,-,sizeof(pre));
memset(v,,sizeof(v));
pre[s]=s;
v[s]=;
while(!q.empty())
{
int w=q.front();
q.pop();
for(int i=; i<=n; i++)
{
if(map[w][i]&&!v[i])
{
pre[i]=w;
v[i]=;
if(i==t)
{
return ;
}
q.push(i);
}
}
}
return ;
}
void EK(int s,int t)
{
int ans=,minx;
while(bfs(s,t)==)
{
minx=inf;
for(int i=t; i!=s; i=pre[i])
{
minx=min(minx,map[pre[i]][i]);
}
for(int i=t; i!=s; i=pre[i])
{
map[pre[i]][i]-=minx;
map[i][pre[i]]+=minx;
}
ans+=minx;
}
printf("%d\n",ans);
return ;
}
int main()
{
int xx,yy,zz;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(map,,sizeof(map));
while(m--)
{
scanf("%d%d%d",&xx,&yy,&zz);
map[xx][yy]+=zz;
}
EK(,n);
}
return ;
}

dinic算法:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[][],dis[];
int m,n;
int bfs(int s,int t)
{
memset(dis,-,sizeof(dis));
dis[s]=;
queue<int>q;
q.push(s);
while(!q.empty())
{
int y=q.front();
q.pop();
for(int i=; i<=n; i++)
{
if(dis[i]==-&&map[y][i])
{
dis[i]=dis[y]+;
q.push(i);
}
}
}
if(dis[t]>) return ;
return ;
}
int dinic(int s,int maxt)
{
if(s==n) return maxt;
int a,sum=maxt;
for(int i=; i<=n&&sum; i++)
{
if(dis[i]==dis[s]+&&map[s][i]>)
{
a=dinic(i,min(sum,map[s][i]));
map[s][i]-=a;
map[i][s]+=a;
sum-=a;
}
}
return maxt-sum;
}
int main()
{
int x,y,z,ans;
while(scanf("%d%d",&m,&n)!=EOF)
{
ans=;
memset(map,,sizeof(map));
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
map[x][y]+=z;
}
while(bfs(,n)==)
{
ans+=dinic(,inf);
}
printf("%d\n",ans);
}
return ;
}

POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)的更多相关文章

  1. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  2. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  3. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  4. poj1273 Drainage Ditches (最大流板子

    网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...

  5. [poj1273]Drainage Ditches(最大流)

    解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...

  6. poj1273 Drainage Ditches Dinic最大流

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 76000   Accepted: 2953 ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  9. 2018.07.06 POJ1273 Drainage Ditches(最大流)

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Description Every time it rains on Farmer J ...

随机推荐

  1. python--list和tuple类型--2

    原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/ 一.创建list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以 ...

  2. php开n次方

    php有开平方函数 sqrt,但没开n次方的函数 网上用根据什么数字原理,可用次方(pow)弄开方,格式为:pow(number, 1/ 开方数) 例如: 4的开平方,可以写成 pow(4, 1/2) ...

  3. ftplib模块【python】

    转自:http://www.cnblogs.com/kaituorensheng/p/4480512.html 函数释义 Python中默认安装的ftplib模块定义了FTP类,其中函数有限,可用来实 ...

  4. Windows下重置Mysql密码

    1.首先停止正在运行的MySQL进程 >net stop mysql 如未加载为服务,可直接在进程管理器或者服务中进行关闭. 2.以安全模式启动MySQL进入mysql目录在命令行下运行 > ...

  5. iOS - xib中关于拖拽手势的潜在错误

    iOS开发拓展篇—xib中关于拖拽手势的潜在错误 一.错误说明 自定义一个用来封装工具条的类 搭建xib,并添加一个拖拽的手势. 主控制器的代码:加载工具条 封装工具条以及手势拖拽的监听事件 此时运行 ...

  6. Swift-'!','?'用法

    ///'!','?','as'的用法 ///'!'与'?'用法与可选类型(Optional) ///首先要了解Optional类型包括什么, ///Optional类型的值包括: 1.nil 2.值 ...

  7. Spring启动过程分析】(1)启动流程简介

    1. spring简介 spring的最基本的功能就是创建对象及管理这些对象之间的依赖关系,实现低耦合.高内聚.还提供像通用日志记录.性能统计.安全控制.异常处理等面向切面的能力,还能帮我们管理最头疼 ...

  8. UVa 130 - Roman Roulette

    模拟约瑟夫环  Roman Roulette  The historian Flavius Josephus relates how, in the Romano-Jewish conflict  o ...

  9. WEB安全番外第二篇--明日之星介绍HTML5安全问题介绍

    一.CORS领域问题: 1.CORS的介绍请参考:跨域资源共享简介 2.HTML5中的XHR2级调用可以打开一个socket连接,发送HTTP请求,有趣的是,上传文件这里恰恰是multi-part/f ...

  10. Sublime Less 自动编译成css

    1.note编译 .下载notejs https://nodejs.org/en/ .首先你要安装lessc.我是用npm包管理器直接安装的,只需要一条命令,如下: npm install less ...