hdoj 3861 The King’s Problem【强连通缩点建图&&最小路径覆盖】
The King’s Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2259 Accepted Submission(s):
795
There are N cities in the kingdom and there are M directional roads between the
cities. That means that if there is a road from u to v, you can only go from
city u to city v, but can’t go from city v to city u. In order to rule his
kingdom more effectively, the king want to divide his kingdom into several
states, and each city must belong to exactly one state. What’s
more, for each pair of city (u, v), if there is one way to go from u to v and go
from v to u, (u, v) have to belong to a same state. And the king must
insure that in each state we can ether go from u to v or go from v to u between
every pair of cities (u, v) without passing any city which belongs to other
state.
Now the king asks for your help, he wants to know the least number
of states he have to divide the kingdom into.
of test cases. And then followed T cases.
The first line for each case
contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the
number of cities and roads in the kingdom. The next m lines each contains two
integers u and v (1 <= u, v <= n), indicating that there is a road going
from city u to city v.
you should just output an integer which is the least number of states the king
have to divide into.
#include<stdio.h>
#include<string.h>
#include<stack>
#include<queue>
#include<vector>
#include<algorithm>
#define MAX 5200
#define MAXM 200100
using namespace std;
vector<int>newmap[MAX];
vector<int>scc[MAX];
int sccno[MAX];
int in[MAX],out[MAX];
int scccnt,dfsclock;
int n,m;
int low[MAX],dfn[MAX];
int instack[MAX];
int ans,head[MAX];
int vis[MAX],city[MAX];
stack<int>s;
struct node
{
int beg,end,next;
}edge[MAXM];
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
}
}
void tarjan(int u)
{
int v,i,j;
low[u]=dfn[u]=++dfsclock;
s.push(u);
instack[u]=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
scccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
sccno[v]=scccnt;
if(v==u)
break;
}
}
}
void find(int l,int r)
{
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(sccno,0,sizeof(sccno));
dfsclock=scccnt=0;
for(int i=l;i<=r;i++)
{
if(!dfn[i])
tarjan(i);
}
}
void suodian()
{
find(1,n);
for(int i=1;i<=scccnt;i++)
newmap[i].clear();
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
int u,v,i,j;
for(i=0;i<ans;i++)
{
u=sccno[edge[i].beg];
v=sccno[edge[i].end];
if(u!=v)
{
newmap[u].push_back(v);
in[v]++;
out[u]++;
}
}
}
int query(int x)
{
int i,j;
for(i=0;i<newmap[x].size();i++)
{
int y=newmap[x][i];
if(!vis[y])
{
vis[y]=1;
if(city[y]==0||query(city[y]))
{
city[y]=x;
return 1;
}
}
}
return 0;
}
void solve()
{
int i,j;
int sum=0;
memset(city,0,sizeof(city));
for(i=1;i<=scccnt;i++)
{
memset(vis,0,sizeof(vis));
if(query(i))
sum++;
}
printf("%d\n",scccnt-sum);//最小路径覆盖=顶点数-最大匹配数
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
getmap();
suodian();
solve();
}
return 0;
}
hdoj 3861 The King’s Problem【强连通缩点建图&&最小路径覆盖】的更多相关文章
- HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)
题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...
- HDU 3861 The King’s Problem (强连通缩点+DAG最小路径覆盖)
<题目链接> 题目大意: 一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.所有点只能属于一块区域:2,如果两点相互可达,则这两点必然要属于同一区域:3,区域内任意两点 ...
- hdu 3861 The King’s Problem trajan缩点+二分图匹配
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861 The King’s Problem 强连通分量 最小路径覆盖
先找出强连通分量缩点,然后就是最小路径覆盖. 构造一个二分图,把每个点\(i\)拆成两个点\(X_i,Y_i\). 对于原图中的边\(u \to v\),在二分图添加一条边\(X_u \to Y_v\ ...
- hdu3861 The King’s Problem 强连通缩点+DAG最小路径覆盖
对多校赛的题目,我深感无力.题目看不懂,英语是能懂的,题目具体的要求以及需要怎么做没有头绪.样例怎么来的都不明白.好吧,看题解吧. http://www.cnblogs.com/kane0526/ar ...
- hdu3861 强连通分量缩点+二分图最最小路径覆盖
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...
- HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...
- HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
随机推荐
- 原生 JavaScript 图片裁剪效果
图片裁剪程序效果如下,可鼠标操作. 拖动左边小方框时在右侧实时显示对应的裁剪图片,同时左侧的拖动框里图片完全显示,拖动框外部图片模糊显示.8个控制点可以对显示区域大小进行控制. HTML 和 CS ...
- js去除重复数值
var c=[2,4,3,5,2,2,2], a = {}, i = 0; for(;i<c.length;i++){ a[c[i]] = 1 //利用对象名称不能重复的特性来去重 } c=[] ...
- [Gauss]POJ1681 Painter's Problem
和POJ1222(分析)完全相同 题意也类似, 可以涂自己以及上下左右五个位置的颜色 问几次能全部涂色 不能输出inf 01方程组 用异或来求解就好了 ][]; // 增广矩阵 ]; // 解 ]; ...
- Earth Mover's Distance (EMD)
原文: http://d.hatena.ne.jp/aidiary/20120804/1344058475作者: sylvan5翻译: Myautsai和他的朋友们(Google Translate. ...
- 解读分库分表中间件Sharding-JDBC
[编者按]数据库分库分表从互联网时代开启至今,一直是热门话题.在NoSQL横行的今天,关系型数据库凭借其稳定.查询灵活.兼容等特性,仍被大多数公司作为首选数据库.因此,合理采用分库分表技术应对海量数据 ...
- 131. Palindrome Partitioning
题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...
- 页面上动态编译及执行java代码
本文地址:http://www.cnblogs.com/liaoyu/p/real-time-compile-and-run-java-code-web-app.html 最近看到同事在页面上编译和执 ...
- ContentLoadingProgressBar不显示问题
ContentLoadingProgressBar需要设置style 并且在XML中布局的位置必须写在content布局的下面 <?xml version="1.0" enc ...
- leetcode面试准备:Kth Largest Element in an Array
leetcode面试准备:Kth Largest Element in an Array 1 题目 Find the kth largest element in an unsorted array. ...
- Linux内核中流量控制
linux内核中提供了流量控制的相关处理功能,相关代码在net/sched目录下:而应用层上的控制是通过iproute2软件包中的tc来实现, tc和sched的关系就好象iptables和netfi ...