Description

最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。

Input

第一行:两个整数N和M(含义如题目描述)。 第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。 接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。 出出出格格格式式式::: ("输"哪去了<_<) 一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)。

Output

一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)

Sample Input

9 10
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1

Sample Output

3

HINT

对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。

【思路】

最短路+拓扑序

求出所有的点到四个始终点的路径长,如果一条边满足dis(edge,x1)+dis(edge,y1)+edge.len=dis(x1,y1)则边edge处于路径x1-y1的最短路上,这样就可以将所有的公共边提出来,建一个[有向图],然后在图上进行拓扑序的求最大路即可。

【代码】

 #include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = ;
const int INF = 1e9; struct Edge { int u,v,w;
};
int n,m,x1,y1,x2,y2,ans;
int dx1[N],dx2[N],dy1[N],dy2[N];
int in[N],dis[N],inq[N];
vector<Edge> es,G[N];
vector<int> g[N];
queue<int> q; void adde(int u,int v,int w) {
es.push_back((Edge){u,v,w});
g[u].push_back((int)es.size()-);
}
void add(int u,int v,int w) {
G[u].push_back((Edge){u,v,w});
in[v]++;
} void spfa(int s,int* dis) {
memset(inq,,sizeof(inq));
FOR(i,,n) dis[i]=INF;
dis[s]=; inq[s]=; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<g[u].size();i++) {
Edge& e=es[g[u][i]];
int v=e.v;
if(dis[v]>dis[u]+e.w) {
dis[v]=dis[u]+e.w;
if(!inq[v])
inq[v]=,q.push(v);
}
}
}
} void topo() {
FOR(i,,n)
if(!in[i]) q.push(i);
while(!q.empty()) {
int u=q.front(); q.pop();
for(int i=;i<G[u].size();i++) {
int v=G[u][i].v;
if(dis[v]<dis[u]+G[u][i].w) {
dis[v]=dis[u]+G[u][i].w;
ans=max(ans,dis[v]);
}
if(!(--in[v])) q.push(v);
}
}
} int main() {
scanf("%d%d%d%d%d%d",&n,&m,&x1,&y1,&x2,&y2);
int u,v,w;
FOR(i,,m) {
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w) , adde(v,u,w);
}
spfa(x1,dx1); spfa(y1,dy1);
spfa(x2,dx2); spfa(y2,dy2);
for(int i=;i<es.size();i+=) {
int u=es[i].u,v=es[i].v,w=es[i].w;
int len1=min(dx1[u],dx1[v])+min(dy1[u],dy1[v])+w;
int len2=min(dx2[u],dx2[v])+min(dy2[u],dy2[v])+w;
if(len1==dx1[y1] && len2==dx2[y2]) {
if(dx1[u]<dx1[v]) add(u,v,w);
else add(v,u,w);
}
}
topo();
printf("%d",ans);
return ;
}

bzoj 1880 [Sdoi2009]Elaxia的路线(最短路+拓扑序)的更多相关文章

  1. BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )

    找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...

  2. bzoj 1880: [Sdoi2009]Elaxia的路线【spfa+拓扑排序】

    有趣啊 先spfa分别求出以s1,t1,s2,t2为起点的最短路,然后把在s1-->t1或者s2-->t2最短路上的边重新建有向图,跑拓扑最长路即可 #include<iostrea ...

  3. 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)

    [SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...

  4. Luogu2149 [SDOI2009]Elaxia的路线-最短路+拓扑排序

    Solution 另外$ m <=5e5$. 两条最短路的 最长公共路径 一定是若干条连续的边, 并且满足拓扑序. 于是我们分别 正向 和反向走第二条路径,若该条边同时是两条最短路径上的边, 则 ...

  5. bzoj 1880: [Sdoi2009]Elaxia的路线

    Description 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希 ...

  6. BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  7. 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP

    [BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...

  8. Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)

    P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...

  9. 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)

    1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...

随机推荐

  1. Python爬虫(小练习)

    近日,在浏览伯乐在线(http://blog.jobbole.com/29281/)的时候碰到一些很不错的资源:25本免费的Python电子书 如下图: 其中,每本都是以名字+超链接的方式,于是激起了 ...

  2. about Q&A in installing linux[centos6,7]

    keywords:grub1,grub2,gnome,kde, question describe:install centos7 by U disk,出现问题, 解决办法: install cent ...

  3. JLink软件升级到4.92之后,Jlink不能用了

    JLink软件升级到4.92之后,Jlink不能用了                                                       情景描述: Jlink软件升级到4.9 ...

  4. 将 Photoshop CC 2015.5 英文界面换成中文, 英文与中文界面互换

    注:转载或引用请注明出处 在英文的win server 2012 r2 上安装PS CC 2015.5 时,安装程序自动按成了英文版的PS,那么如何将英文换成中文呢? 网上大多讲的都是将中文换成英文, ...

  5. Excel Cannot Connect to SharePoint List

    As I am working in SharePoint support, I come across so many issues on day 2 day basis and always tr ...

  6. 安装gem invalid date format in specification错误的解决方法

    别的不说,报错信息直接贴图: 解决方法: 1.找到你环境目录下的spec,例如:D:\Ruby187\lib\ruby\gems\1.8\specifications. 2.找到引起错误文件的gems ...

  7. tlplayer for android V2.7(支持变速不变调) 2014-07-20更新

    2014-07-20新版本已经修复部分视频倾斜问题,已经更新到服务器,需要的朋友自行下载. 此版本修正了倾斜问题,增加水印等功能.可以动态添加水印. tlplayer for android V2.6 ...

  8. write & read a MapFile(基于全新2.2.0API)

    write & read a  MapFile import java.io.IOException; import org.apache.hadoop.io.IntWritable; imp ...

  9. iconv装换文件编码格式

    最近在mac上编译xml文本文件的时候用vim打开文件汉字总是显示乱码,修改.vimrc,修改iterm编码格式各种方法都使用遍了.最后通过iconv工具将原来的文件编码格式直接转为UTF-8解决掉. ...

  10. bzoj1930

    一开始我觉得这不是一个弱弱的费用流吗? 每个豆豆拆点,入点出点随便连连 由于肯定是DAG图,边权为正的最大费用肯定能增广出来 于是我们只要跑总流量为2的最大费用最大流不就行了吗 但是 这样会TLE,因 ...