Long long ago, there is a famous farmer named John. He owns a big farm and many cows. There are two kinds of cows on his farm, one is Friesian, and another one is Ayrshire. Each cow has its own territory. In detail, the territory of Friesian is a circle, and of Ayrshire is a triangle. It is obvious that each cow doesn't want their territory violated by others, so the territories won't intersect.

Since the winter is falling, FJ has to build a fence to protect all his cows from hungry wolves, making the territory of cows in the fence. Due to the financial crisis, FJ is currently lack of money, he wants the total length of the fence minimized. So he comes to you, the greatest programmer ever for help. Please note that the part of fence don't have to be a straight line, it can be a curve if necessary.

Input

The input contains several test cases, terminated by EOF. The number of test cases does not exceed 20.

Each test case begins with two integers N and M(0 ≤ N, M ≤ 50, N + M > 0)which denotes the number of the Friesian and Ayrshire respectively. Then follows N + M lines, each line representing the territory of the cow. Each of the first N lines contains three integers X i, Y i, R i(1 ≤ R i ≤ 500),denotes the coordinates of the circle's centre and radius. Then each of the remaining M lines contains six integers X1 i, Y1 i, X2 i, Y2 i, X3 i, Y3 i, denotes the coordinates of the triangle vertices. The absolute value of the coordinates won't exceed 10000.

Output

For each test case, print a single line containing the minimal fence length. Your output should have an absolute error of at most 1e-3.

Sample Input

1 1

4 4 1

0 0 0 2 2 0

Sample Output

15.66692

Hint

Please see the sample picture for more details, the fence is highlighted with red.

发现类似凸包,但是圆没法解决,做法是把圆拆开来就好了,拆成一千个点,然后套模板,求周长的话,可以直接求没两点距离,想要精确度高一点,可以在圆的点做个标记,是哪个圆,半径是多少,然后求的时候如果是同一个圆就算弧长

直接求距离的

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
typedef double db;
const ll mod=1e9+100;
const db e=exp(1);
const db eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int INF=0xfffffff;
struct Point
{
double x,y;
}p[150+50*2000],s[150+50*2000];
int top;
double direction(Point p1,Point p2,Point p3) {
double ans=(p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y);
return ans; }//点2和3,按哪个和点一的角度更小排,相同的话按哪个更近排
double dis(Point p1,Point p2) { return sqrt((p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y)); }
bool cmp(Point p1,Point p2)//极角排序
{
double temp=direction(p[0],p1,p2);
if(fabs(temp)<eps) temp=0;
if(temp<0)return true ;
if(temp==0&&dis(p[0],p1)<dis(p[0],p2))return true;
return false;
}
void Graham(int n)
{
int pos;
double minx,miny;
minx=miny=INF;
for(int i=0;i<n;i++)//找最下面的基点
if(p[i].y<miny||(p[i].y==miny&&p[i].x<minx))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
swap(p[0],p[pos]);
sort(p+1,p+n,cmp);
p[n]=p[0];
//sort(p+2,p+n,cmp1);
s[0]=p[0];s[1]=p[1];s[2]=p[2];
top=2;
for(int i=3;i<=n;i++)
{
while(direction(s[top-1],s[top],p[i])>=0&&top>=2)
top--;
s[++top]=p[i] ;
}
}
int main()
{
int n,m;
while(~sf("%d%d",&m,&n))
{
double x,y,r;
int ans=0;
while(m--)
{
sf("%lf%lf%lf",&x,&y,&r);
rep(i,0,2000)
{
p[ans].x=x+r*cos(2.0*pi*i/2000);
p[ans++].y=y+r*sin(2.0*pi*i/2000);
}
}
while(n--)
{
sf("%lf%lf%lf%lf%lf%lf",&p[ans].x,&p[ans].y,&p[ans+1].x,&p[ans+1].y,&p[ans+2].x,&p[ans+2].y);
ans+=3;
}
Graham(ans);
double sum=0;
s[top]=s[0];
rep(i,0,top)
{
sum+=dis(s[i],s[i+1]);
}
pf("%.5lf\n",sum);
} return 0;
}

求弧长的

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
typedef double db;
const ll mod=1e9+100;
const db e=exp(1);
const db eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int INF=0xfffffff;
struct Point
{
double x,y,id,r;
}p[150+50*1002],s[150+50*1002];
int top;
double direction(Point p1,Point p2,Point p3) { double ans=(p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y);return ans; }//点2和3,按哪个和点一的角度更小排,相同的话按哪个更近排
double dis(Point p1,Point p2) { return sqrt((p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y)); }
bool cmp(Point p1,Point p2)//极角排序
{
double temp=direction(p[0],p1,p2);
if(fabs(temp)<eps) temp=0;
if(temp<0)return true ;
if(temp==0&&dis(p[0],p1)<dis(p[0],p2))return true;
return false;
}
void Graham(int n)
{
int pos;
double minx,miny;
minx=miny=INF;
for(int i=0;i<n;i++)//找最下面的基点
if(p[i].y<miny||(p[i].y==miny&&p[i].x<minx))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
swap(p[0],p[pos]);
sort(p+1,p+n,cmp);
p[n]=p[0];
s[0]=p[0];s[1]=p[1];s[2]=p[2];
top=2;
for(int i=3;i<=n;i++)
{
while(direction(s[top-1],s[top],p[i])>=0&&top>=2)
top--;
s[++top]=p[i] ;
}
}
int main()
{
int n,m; while(~sf("%d%d",&m,&n))
{ double x,y,r;
int ans=0;
int ID=1;
while(m--)
{
sf("%lf%lf%lf",&x,&y,&r);
rep(i,0,1000)
{
p[ans].id=ID;
p[ans].r=r;
p[ans].x=x+r*cos(2.0*pi*i/1000);
p[ans++].y=y+r*sin(2.0*pi*i/1000);
}
ID++;
}
while(n--)
{
sf("%lf%lf%lf%lf%lf%lf",&p[ans].x,&p[ans].y,&p[ans+1].x,&p[ans+1].y,&p[ans+2].x,&p[ans+2].y);
p[ans].id=0;
p[ans+1].id=0;
p[ans+2].id=0;
ans+=3;
}
Graham(ans);
double sum=0;
rep(i,0,top)
if(s[i].id>0&&(s[i].id==s[(i+1)%top].id))
sum+=1.0*s[i].r*2*pi/1000.0;
else
sum+=dis(s[i],s[(i+1)%top]);
pf("%.5lf\n",sum);
} return 0;
}

C - Building Fence的更多相关文章

  1. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  2. HDU 4667 Building Fence(求凸包的周长)

    A - Building Fence Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u ...

  3. HDU 4667 Building Fence

    题意: 给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少. 做法:--水过... 把一个圆均匀的切割成500个点,然后求凸包. 注意:求完凸包,在求周长的时候记得要把圆 ...

  4. 4667 Building Fence 解题报告

    题意:给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少. 解法1:在每个圆上均匀的取2000个点,求凸包周长就可以水过. 解法2:求出所有圆之间的外公切线的切点,以及过 ...

  5. [hdu4667]Building Fence 计算几何 瞎瘠薄搞

    大致题意: 给出n个圆和m个三角形,求最小的的,能将所有图形覆盖的图形的周长. 正解为求所有三角形顶点与圆的切点以及圆和圆的切点构造凸包,再求路径. 因为要求结果误差<=1e-3 所以 我们可以 ...

  6. HDU 4667 Building Fence 计算几何 凸包+圆

    1.三角形的所有端点 2.过所有三角形的端点对所有圆做切线,得到所有切点. 3.做任意两圆的外公切线,得到所有切点. 对上述所有点求凸包,标记每个点是三角形上的点还是某个圆上的点. 求完凸包后,因为所 ...

  7. hdu 4667 Building Fence < 计算几何模板>

    //大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...

  8. 【 2013 Multi-University Training Contest 7 】

    HDU 4666 Hyperspace 曼哈顿距离:|x1-x2|+|y1-y2|. 最远曼哈顿距离,枚举x1与x2的关系以及y1与y2的关系,取最大值就是答案. #include<cstdio ...

  9. poj 1037 A decorative fence

    题目链接:http://poj.org/problem?id=1037 Description Richard just finished building his new house. Now th ...

随机推荐

  1. 使用Let’s Encrypt生成免费的SSL证书

    SSL(安全套接层,Secure Sockets Layer),及其继任者 TLS (传输层安全,Transport Layer Security)是为网络通信提供安全及数据完整性的一种安全协议.TL ...

  2. PRTG参考价格

    2010年的香港的网站上看到如下价格:http://kb.option-hk.com/?tag=prtg-network-monitor 什么才算一个sensor What counts as a s ...

  3. about the libiconv.2.dylib

    https://stackoverflow.com/questions/5835847/libiconv-2-dylib-mac-os-x-problem https://blog.csdn.net/ ...

  4. Rotate Image 旋转图像

    You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). ...

  5. 使用robot_pose_ekf对传感器信息融合

    robot_pose_ekf是ROS Navigation stack中的一个包,通过扩展卡尔曼滤波器对imu.里程计odom.视觉里程计vo的数据进行融合,来估计平面移动机器人的真实位置姿态,输出o ...

  6. linux使用pam_tally2.so模块限制登录3次失败后禁止5分钟

    在线上的服务器有时需要限制用户登录次数.这个功能可以通过pam的pam_tally2.so模块来实现 PAM模块是用sun提出的一种认证机制 pam_tally2.so模块 一.格式 pam_tall ...

  7. Android 组件系列-----Activity初步

    在上篇博文讲解了Android的Activity这个组件的启动流程后,接下来我们就来看看我们的Activity与我们的布局文件的关系吧 我们先来看看一个最简单的布局文件的内容: <Relativ ...

  8. java中自定义注释@interface的用法

    一.什么是注释     说起注释,得先提一提什么是元数据(metadata).所谓元数据就是数据的数据.也就是说,元数据是描述数据的.就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义.而J ...

  9. 【转】JS获取浏览器可视区域的尺寸

    from: http://www.xiaoboy.com/detail/1341545044.html 所谓可视区域是指能看得见的区域,即在浏览器中能看到页面的区域(高度与宽度).刚刚使用 docum ...

  10. Go语言_iota用法

    一.介绍 iota,特殊常量,可以认为是一个可以被编译器修改的常量. 在每一个const关键字出现时,被重置为0,然后再下一个const出现之前,每出现一次iota,其所代表的数字会自动增加1. io ...