Long long ago, there is a famous farmer named John. He owns a big farm and many cows. There are two kinds of cows on his farm, one is Friesian, and another one is Ayrshire. Each cow has its own territory. In detail, the territory of Friesian is a circle, and of Ayrshire is a triangle. It is obvious that each cow doesn't want their territory violated by others, so the territories won't intersect.

Since the winter is falling, FJ has to build a fence to protect all his cows from hungry wolves, making the territory of cows in the fence. Due to the financial crisis, FJ is currently lack of money, he wants the total length of the fence minimized. So he comes to you, the greatest programmer ever for help. Please note that the part of fence don't have to be a straight line, it can be a curve if necessary.

Input

The input contains several test cases, terminated by EOF. The number of test cases does not exceed 20.

Each test case begins with two integers N and M(0 ≤ N, M ≤ 50, N + M > 0)which denotes the number of the Friesian and Ayrshire respectively. Then follows N + M lines, each line representing the territory of the cow. Each of the first N lines contains three integers X i, Y i, R i(1 ≤ R i ≤ 500),denotes the coordinates of the circle's centre and radius. Then each of the remaining M lines contains six integers X1 i, Y1 i, X2 i, Y2 i, X3 i, Y3 i, denotes the coordinates of the triangle vertices. The absolute value of the coordinates won't exceed 10000.

Output

For each test case, print a single line containing the minimal fence length. Your output should have an absolute error of at most 1e-3.

Sample Input

1 1

4 4 1

0 0 0 2 2 0

Sample Output

15.66692

Hint

Please see the sample picture for more details, the fence is highlighted with red.

发现类似凸包,但是圆没法解决,做法是把圆拆开来就好了,拆成一千个点,然后套模板,求周长的话,可以直接求没两点距离,想要精确度高一点,可以在圆的点做个标记,是哪个圆,半径是多少,然后求的时候如果是同一个圆就算弧长

直接求距离的

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
typedef double db;
const ll mod=1e9+100;
const db e=exp(1);
const db eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int INF=0xfffffff;
struct Point
{
double x,y;
}p[150+50*2000],s[150+50*2000];
int top;
double direction(Point p1,Point p2,Point p3) {
double ans=(p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y);
return ans; }//点2和3,按哪个和点一的角度更小排,相同的话按哪个更近排
double dis(Point p1,Point p2) { return sqrt((p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y)); }
bool cmp(Point p1,Point p2)//极角排序
{
double temp=direction(p[0],p1,p2);
if(fabs(temp)<eps) temp=0;
if(temp<0)return true ;
if(temp==0&&dis(p[0],p1)<dis(p[0],p2))return true;
return false;
}
void Graham(int n)
{
int pos;
double minx,miny;
minx=miny=INF;
for(int i=0;i<n;i++)//找最下面的基点
if(p[i].y<miny||(p[i].y==miny&&p[i].x<minx))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
swap(p[0],p[pos]);
sort(p+1,p+n,cmp);
p[n]=p[0];
//sort(p+2,p+n,cmp1);
s[0]=p[0];s[1]=p[1];s[2]=p[2];
top=2;
for(int i=3;i<=n;i++)
{
while(direction(s[top-1],s[top],p[i])>=0&&top>=2)
top--;
s[++top]=p[i] ;
}
}
int main()
{
int n,m;
while(~sf("%d%d",&m,&n))
{
double x,y,r;
int ans=0;
while(m--)
{
sf("%lf%lf%lf",&x,&y,&r);
rep(i,0,2000)
{
p[ans].x=x+r*cos(2.0*pi*i/2000);
p[ans++].y=y+r*sin(2.0*pi*i/2000);
}
}
while(n--)
{
sf("%lf%lf%lf%lf%lf%lf",&p[ans].x,&p[ans].y,&p[ans+1].x,&p[ans+1].y,&p[ans+2].x,&p[ans+2].y);
ans+=3;
}
Graham(ans);
double sum=0;
s[top]=s[0];
rep(i,0,top)
{
sum+=dis(s[i],s[i+1]);
}
pf("%.5lf\n",sum);
} return 0;
}

求弧长的

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
typedef long double ld;
typedef double db;
const ll mod=1e9+100;
const db e=exp(1);
const db eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int INF=0xfffffff;
struct Point
{
double x,y,id,r;
}p[150+50*1002],s[150+50*1002];
int top;
double direction(Point p1,Point p2,Point p3) { double ans=(p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y);return ans; }//点2和3,按哪个和点一的角度更小排,相同的话按哪个更近排
double dis(Point p1,Point p2) { return sqrt((p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y)); }
bool cmp(Point p1,Point p2)//极角排序
{
double temp=direction(p[0],p1,p2);
if(fabs(temp)<eps) temp=0;
if(temp<0)return true ;
if(temp==0&&dis(p[0],p1)<dis(p[0],p2))return true;
return false;
}
void Graham(int n)
{
int pos;
double minx,miny;
minx=miny=INF;
for(int i=0;i<n;i++)//找最下面的基点
if(p[i].y<miny||(p[i].y==miny&&p[i].x<minx))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
swap(p[0],p[pos]);
sort(p+1,p+n,cmp);
p[n]=p[0];
s[0]=p[0];s[1]=p[1];s[2]=p[2];
top=2;
for(int i=3;i<=n;i++)
{
while(direction(s[top-1],s[top],p[i])>=0&&top>=2)
top--;
s[++top]=p[i] ;
}
}
int main()
{
int n,m; while(~sf("%d%d",&m,&n))
{ double x,y,r;
int ans=0;
int ID=1;
while(m--)
{
sf("%lf%lf%lf",&x,&y,&r);
rep(i,0,1000)
{
p[ans].id=ID;
p[ans].r=r;
p[ans].x=x+r*cos(2.0*pi*i/1000);
p[ans++].y=y+r*sin(2.0*pi*i/1000);
}
ID++;
}
while(n--)
{
sf("%lf%lf%lf%lf%lf%lf",&p[ans].x,&p[ans].y,&p[ans+1].x,&p[ans+1].y,&p[ans+2].x,&p[ans+2].y);
p[ans].id=0;
p[ans+1].id=0;
p[ans+2].id=0;
ans+=3;
}
Graham(ans);
double sum=0;
rep(i,0,top)
if(s[i].id>0&&(s[i].id==s[(i+1)%top].id))
sum+=1.0*s[i].r*2*pi/1000.0;
else
sum+=dis(s[i],s[(i+1)%top]);
pf("%.5lf\n",sum);
} return 0;
}

C - Building Fence的更多相关文章

  1. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  2. HDU 4667 Building Fence(求凸包的周长)

    A - Building Fence Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u ...

  3. HDU 4667 Building Fence

    题意: 给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少. 做法:--水过... 把一个圆均匀的切割成500个点,然后求凸包. 注意:求完凸包,在求周长的时候记得要把圆 ...

  4. 4667 Building Fence 解题报告

    题意:给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少. 解法1:在每个圆上均匀的取2000个点,求凸包周长就可以水过. 解法2:求出所有圆之间的外公切线的切点,以及过 ...

  5. [hdu4667]Building Fence 计算几何 瞎瘠薄搞

    大致题意: 给出n个圆和m个三角形,求最小的的,能将所有图形覆盖的图形的周长. 正解为求所有三角形顶点与圆的切点以及圆和圆的切点构造凸包,再求路径. 因为要求结果误差<=1e-3 所以 我们可以 ...

  6. HDU 4667 Building Fence 计算几何 凸包+圆

    1.三角形的所有端点 2.过所有三角形的端点对所有圆做切线,得到所有切点. 3.做任意两圆的外公切线,得到所有切点. 对上述所有点求凸包,标记每个点是三角形上的点还是某个圆上的点. 求完凸包后,因为所 ...

  7. hdu 4667 Building Fence < 计算几何模板>

    //大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...

  8. 【 2013 Multi-University Training Contest 7 】

    HDU 4666 Hyperspace 曼哈顿距离:|x1-x2|+|y1-y2|. 最远曼哈顿距离,枚举x1与x2的关系以及y1与y2的关系,取最大值就是答案. #include<cstdio ...

  9. poj 1037 A decorative fence

    题目链接:http://poj.org/problem?id=1037 Description Richard just finished building his new house. Now th ...

随机推荐

  1. Tomcat增加虚拟内存(转)

    程序要遍历读取xml并写入数据库,需要占用大量内存 如果数据量大则报错 Exception in thread "Timer-0" java.lang.OutOfMemoryErr ...

  2. [Android] 关于Android的问号?和@符号的用法

    @表示引用资源,声明这是一个资源引用-随后的文本是以@[package:]type/name形式提供的资源名.@android:string表明引用的系统的(android.*)资源@string表示 ...

  3. centos安装memcached和PHP php-pecl-memcached.x86_64

    安装memcached sudo yum install memcached.x86_64 安装php-pecl-memcached php memcache有两个实现类 php-pecl-memca ...

  4. webservice-整理

    webservice-整理 RPC与WebService的区别:https://blog.csdn.net/defonds/article/details/71641634 http://www.di ...

  5. 如何唯一的标识一台Android设备?

    UUID : (Universally Unique Identifier)全局唯一标识符,是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的.由以下几部分的组合:当前日期和时间(U ...

  6. Apktool编译找不到“keyboardNavigationCluster”

    喜欢用使用apktool来反编译.编译安卓程序,然后用其他工具来分析.签名.优化等,它比其他工具的优点是不易出错. 命令 反编译命令:apktool d -f XX.apk -o 反编译输出的目录(如 ...

  7. Windows Server 2012 R2 或 2016 无法安装 .NET Framework 3.5.1

    问题描述 使用 Windows Server 2012 R2 或 Windows Server 2016系统,发现在安装 .NET Framework 3.5.1 时报错,报错内容如下图所示. 原因分 ...

  8. 关于ř与tableau的集成---- k均值聚类

    1.利用R内置数据集iris: 2.通过Rserve 包连接tableau,服务器:localhost,默认端口6311: 3.加载数据集iris: 4.编辑字段:Cluster <span s ...

  9. Scale-out NAS 和scale-up NAS 系统的优缺点

    企业IT部门在应对非结构化数据的爆炸性增长时,他们需要考虑选购适合的NAS系统,决定传统的固定容量的NAS设备和新兴的scale-out NAS设备哪一种能更好地满足他们的文件存储需求. 为了帮助你做 ...

  10. Effective Java 第三版——61. 基本类型优于装箱的基本类型

    Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...