洛谷.2197.nim游戏(博弈论 Nim)
后手必胜(先手必败,P-position)当且仅当n堆石子数异或和为0。
首先0一定是P-position,
假设a1a2a3...an=K
若K!=0,则一定可以找到一个ai,ai在K的最高位的1上为1,显然ai > aiK,那么可以把ai变成aiK,局面就成了a1a2...anai^K = K^K = 0 (后手就处于P-position)
若K==0,至少取一个显然不能使K仍为0
#include <cstdio>
#include <cctype>
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int MAXIN=1e6;
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
int t=read(),n,res;
while(t--)
{
n=read(), res=0;
while(n--) res^=read();
puts(res?"Yes":"No");
}
return 0;
}
洛谷.2197.nim游戏(博弈论 Nim)的更多相关文章
- NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结
NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子 ...
- 洛谷 P1965 转圈游戏
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...
- 洛谷 2197 nim游戏
题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里 ...
- 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论
正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...
- 洛谷 P2197 【模板】nim游戏 解题报告
P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- 三色抽卡游戏 博弈论nim
你的对手太坏了!在每年的年度三色抽卡游戏锦标赛上,你的对手总是能打败你,他的秘诀是什么? 在每局三色抽卡游戏中,有n个卡组,每个卡组里所有卡片的颜色都相同,且颜色只会是红(R).绿(G).蓝(B)中的 ...
- 洛谷 P1000 超级玛丽游戏
P1000 超级玛丽游戏 题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级 ...
- 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山
前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...
随机推荐
- python内置模块之collections(六)
前言 collections是Python内建的一个集合模块,提供了许多有用的集合类. 系列文章 python模块分析之random(一) python模块分析之hashlib加密(二) python ...
- python将图片转换为Framebuffer裸数据格式(终端显示图片)【转】
转自:https://www.cnblogs.com/zqb-all/p/6107905.html 要在ubuntu终端显示图片或者在板子的LCD显示图片,Framebuffer是一个简单易用的接口, ...
- python实现监控windows服务控制开关服务
转载自 :http://www.jb51.net/article/49106.htm #!/usr/bin/env python #-*- encoding:utf-8 -*- "" ...
- JFreeChart入门
JFreeChart主要用来各种各样的图表,这些图表包括:饼图.柱状图(普通柱状图以及堆栈柱状图).线图.区域图.分布图.混合图.甘特图以及一些仪表盘等等 (源代码下载) 示例程序运用的jar包: j ...
- Tronado
Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过为了能有效 ...
- Luogu P4945 【最后的战役】
本来以为做法一样,就是少带个$log$,结果发现看不懂出题人的题解(我好菜啊) 那就自己写一篇吧 比较简单的$DP$思路 状态定义: 前两个转移很好处理,第三个好像就不好办了 不妨暴力定义进状态里 设 ...
- 通过T4模板实现代码自动生成
1:准备.tt模板 using BBFJ.OA.IBLL; using BBFJ.OA.IDAL; using BBFJ.OA.Model; using System; using System.Co ...
- 老方块Oracle--数值类型性能考虑
我们在设计数据库表,或者在使用SQL,写程序时都会经常用到数值类型.比如常见的number.int.float. float是浮点类型,也属于数值类型,我们最常用的是number类型. 他的格式是nu ...
- pyinstaller将py文件转成exe格式
首先要注意一下:打包python文件成exe格式这个过程只能在windows环境下运行 1. 直接在命令行用pip安装 pyinstaller pip install pyinstaller 2. 下 ...
- Spring事务传播行为
什么是事务传播行为 public void methodA(){ methodB(); //doSomething } @Transaction(Propagation=XXX) public voi ...