题目链接

后手必胜(先手必败,P-position)当且仅当n堆石子数异或和为0。

首先0一定是P-position,

假设a1a2a3...an=K

若K!=0,则一定可以找到一个ai,ai在K的最高位的1上为1,显然ai > aiK,那么可以把ai变成aiK,局面就成了a1a2...anai^K = K^K = 0 (后手就处于P-position)

若K==0,至少取一个显然不能使K仍为0

#include <cstdio>
#include <cctype>
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int MAXIN=1e6; char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
int t=read(),n,res;
while(t--)
{
n=read(), res=0;
while(n--) res^=read();
puts(res?"Yes":"No");
}
return 0;
}

洛谷.2197.nim游戏(博弈论 Nim)的更多相关文章

  1. NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结

    NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子 ...

  2. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

  3. 洛谷 2197 nim游戏

    题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里 ...

  4. 洛谷$P$4301 $[CQOI2013]$新$Nim$游戏 线性基+博弈论

    正解:线性基 解题报告: 传送门! 这题其实就是个博弈论+线性基,,,而且博弈论还是最最基础的那个结论,然后线性基也是最最基础的那个板子$QwQ$ 首先做这题的话需要一点点儿博弈论的小技能,,,这题的 ...

  5. 洛谷 P2197 【模板】nim游戏 解题报告

    P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...

  6. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  7. 三色抽卡游戏 博弈论nim

    你的对手太坏了!在每年的年度三色抽卡游戏锦标赛上,你的对手总是能打败你,他的秘诀是什么? 在每局三色抽卡游戏中,有n个卡组,每个卡组里所有卡片的颜色都相同,且颜色只会是红(R).绿(G).蓝(B)中的 ...

  8. 洛谷 P1000 超级玛丽游戏

    P1000 超级玛丽游戏 题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级 ...

  9. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

随机推荐

  1. 【网络编程1】网络编程基础-TCP、UDP编程

    网络基础知识 网络模型知识 OSI七层模型:(Open Systems Interconnection Reference Model)开放式通信系统互联参考模型,是国际标准化组织(ISO)提出的一个 ...

  2. 【转】CentOS 7.X 系统安装及优化

    [转]CentOS 7.X 系统安装及优化 centos的演变 启动流程sysvinit 串行启动:一次一个,一个一个启动 并行启动:全部的一起启动 init优点 运行非常良好.主要依赖于shell脚 ...

  3. python内置模块之unittest测试(五)

    系列文章 python模块分析之random(一) python模块分析之hashlib加密(二) python模块分析之typing(三) python模块分析之logging日志(四) pytho ...

  4. Python数据分析入门

    Python数据分析入门 最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内 ...

  5. 算法时间复杂度和NP问题简介

    这里主要简单说一下算法的时间复杂度和NP问题简介,毕竟分析算法的时间复杂度上界有助于分析算法的好坏,分析算法好坏也有助于分析是否还有更好的算法: 一.时间复杂度: 一般关心的还有递归问题中的时间复杂度 ...

  6. MySQL基于LVM快照的备份恢复(临时)

    目录1.数据库全备份2.准备LVM卷3.数据恢复到LVM卷4.基于LVM快照备份数据5.数据灾难恢复6.总结 写在前面:测试环境中已安装有mysql 5.5.36数据库,但数据目录没有存放在LVM卷, ...

  7. dns轮询

    负载均衡最开始一步,利用它实现负载均衡集群的定位

  8. zabbix3.0监控centos当主机cpu使用率超过90%的时候报警

    在windows系统中监控cpu利用率非常容易,自带模板就有这样的功能,但是在linux里面没有默认的模板 只有cpu的负载,默认当cpu的负载在一定时间内5以上报警 cpu utilization中 ...

  9. favicon.ico问题

    在访问web的时候,有时出现favicon.ico 不知道这是一个什么东西,查看百度:

  10. 转载:2.2.5 在配置中使用变量《深入理解Nginx》(陶辉)

    原文:https://book.2cto.com/201304/19630.html 有些模块允许在配置项中使用变量,如在日志记录部分,具体示例如下.log_format  main  '$remot ...