Poj3696 The Lukiest Number
Solution
懒得写啦
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;i++)
#define yes(i,a,b) for(Rg int i=a;i>=b;i--)
#define ll long long
using namespace std;
int read()
{
int x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
ll T,L,d,n,m,ans,c;
bool flag=;
ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);}
ll phi(ll x)
{
ll sm=x,y=x;
go(i,,sqrt(y))
{
if(x%i==)sm=sm/i*(i-);
while(x%i==)x/=i;
}
if(x>)sm=sm/x*(x-);
return sm;
}
ll mul(ll x,ll y,ll mod)
{
ll sm=;
while(y)
{
if(y&)sm=(sm+x)%mod;
x=(x<<)%mod;y>>=;
}
return sm;
}
ll ksm(ll x,ll y,ll mod)
{
ll sm=;
while(y)
{
if(y&)sm=mul(sm,x,mod);//注意这里直接乘起来会溢出
x=mul(x,x,mod);y>>=;
}
return sm;
}
int main()
{
while()
{
scanf("%lld",&L);if(!L)break;T++;flag=;ans=;
if(%L==){printf("Case %lld: 1\n",T);continue;}
d=gcd(L,);n=*L/d;m=phi(n);c=sqrt(m);
go(i,,c)
{
if(m%i==&&ksm(,i,n)==){ans=i;flag=;break;}
}
if(!flag)
yes(i,c,)
{
if(m%i==&&ksm(,m/i,n)==){ans=m/i;break;}
}
printf("Case %lld: %lld\n",T,ans);
}
return ;
}
Poj3696 The Lukiest Number的更多相关文章
- POJ3696 The Luckiest number
题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...
- POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...
- [POJ3696]The Luckiest number(数论)
题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...
- POJ3696 The Luckiest Number 欧拉定理
昨天终于把欧拉定理的证明看明白了...于是兴冲冲地写了2道题,发现自己啥都不会qwq 题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数. 这很有意思么... 首先, ...
- 「POJ3696」The Luckiest number【数论,欧拉函数】
# 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...
- JavaScript Math和Number对象
目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...
- Harmonic Number(调和级数+欧拉常数)
题意:求f(n)=1/1+1/2+1/3+1/4-1/n (1 ≤ n ≤ 108).,精确到10-8 (原题在文末) 知识点: 调和级数(即f(n))至今没有一个完全正确的公式, ...
- Java 特定规则排序-LeetCode 179 Largest Number
Given a list of non negative integers, arrange them such that they form the largest number. For exam ...
- Eclipse "Unable to install breakpoint due to missing line number attributes..."
Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...
随机推荐
- cxf Webservice 使用httpClient 调用
package com.wistron.wh.swpc.portal.uitl; import java.io.BufferedInputStream;import java.io.File;impo ...
- mysql5.7 rpm安装教程
注意版本和此次更新时间 2017-12-03 版本:mysql-5.7.20-1.el6.x86_64 环境:linux6.x 官方下载地址: wget https://dev.mysql.co ...
- instanceof判断的对象可以是接口
instanceof是Java的一个二元操作符(运算符) 用法 boolean result = object instanceof class instanceof通过返回一个布尔值来指出,这个对象 ...
- 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)
洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...
- 用ip代替机器名访问sharepoint 站点
1. aam 里加入一个ip的internet 2. iis里不用加上ip,但不要有host name 出现的问题: 1. 当打开站点里会出现这个错误 file not found 2. 当加授予 ...
- PKUWC 2019 记
“连剑都插在了地上,可是我不应该就这么承认失败,想要到达山顶的人,不应该在山脚下就倒下啊” Day -5 (2019.1.15) 学考结束了,文化课暂停一段.早上飞机前往中山纪念中学.纪中好大呀,果 ...
- android + eclipse + 后台静默安装(一看就会)
首先要说到三个类. import android.content.pm.IPackageInstallObserver; import android.content.pm.IPackageIns ...
- change username on ubuntu.
Below tutorial will show you how to change username in ubuntu 12.04 precise.First,we need login as r ...
- A1033. To Fill or Not to Fill
With highways available, driving a car from Hangzhou to any other city is easy. But since the tank c ...
- hdu 1756(判断点是否在多边形中)
传送门 题解: 射线法判定点是否在多边形内部: AC代码: #include<iostream> #include<cstdio> #include<cmath> ...