Poj3696 The Lukiest Number
Solution
懒得写啦
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;i++)
#define yes(i,a,b) for(Rg int i=a;i>=b;i--)
#define ll long long
using namespace std;
int read()
{
int x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
ll T,L,d,n,m,ans,c;
bool flag=;
ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);}
ll phi(ll x)
{
ll sm=x,y=x;
go(i,,sqrt(y))
{
if(x%i==)sm=sm/i*(i-);
while(x%i==)x/=i;
}
if(x>)sm=sm/x*(x-);
return sm;
}
ll mul(ll x,ll y,ll mod)
{
ll sm=;
while(y)
{
if(y&)sm=(sm+x)%mod;
x=(x<<)%mod;y>>=;
}
return sm;
}
ll ksm(ll x,ll y,ll mod)
{
ll sm=;
while(y)
{
if(y&)sm=mul(sm,x,mod);//注意这里直接乘起来会溢出
x=mul(x,x,mod);y>>=;
}
return sm;
}
int main()
{
while()
{
scanf("%lld",&L);if(!L)break;T++;flag=;ans=;
if(%L==){printf("Case %lld: 1\n",T);continue;}
d=gcd(L,);n=*L/d;m=phi(n);c=sqrt(m);
go(i,,c)
{
if(m%i==&&ksm(,i,n)==){ans=i;flag=;break;}
}
if(!flag)
yes(i,c,)
{
if(m%i==&&ksm(,m/i,n)==){ans=m/i;break;}
}
printf("Case %lld: %lld\n",T,ans);
}
return ;
}
Poj3696 The Lukiest Number的更多相关文章
- POJ3696 The Luckiest number
题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...
- POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...
- [POJ3696]The Luckiest number(数论)
题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...
- POJ3696 The Luckiest Number 欧拉定理
昨天终于把欧拉定理的证明看明白了...于是兴冲冲地写了2道题,发现自己啥都不会qwq 题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数. 这很有意思么... 首先, ...
- 「POJ3696」The Luckiest number【数论,欧拉函数】
# 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...
- JavaScript Math和Number对象
目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...
- Harmonic Number(调和级数+欧拉常数)
题意:求f(n)=1/1+1/2+1/3+1/4-1/n (1 ≤ n ≤ 108).,精确到10-8 (原题在文末) 知识点: 调和级数(即f(n))至今没有一个完全正确的公式, ...
- Java 特定规则排序-LeetCode 179 Largest Number
Given a list of non negative integers, arrange them such that they form the largest number. For exam ...
- Eclipse "Unable to install breakpoint due to missing line number attributes..."
Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...
随机推荐
- python之tkinter使用-二级菜单
# 菜单功能说明:二级菜单 import tkinter as tk from tkinter import messagebox root = tk.Tk() root.title('菜单选择') ...
- codeforces9A
Die Roll CodeForces - 9A Yakko,Wakko和Dot,世界著名的狂欢三宝,哈哈,不知道你是否看过这个动画片. 某一天,过年了,他们决定暂定卡通表演,并去某些地方旅游一下.Y ...
- TM数据
qatestjr_xuyue10@vipabc.comqatestjr_xuyue01@vipabc.com jrNHc2 jUBRTEqatestjr_nianyue@vipabc.com QE9E ...
- ubuntu eclipse 无法打开
报错: The catalog could not be loaded... 这个问题,我上网查了很久.. 基本上网上可用的办法我都试过了.全是失败的 firefox+autoproxy,shadow ...
- Cuba获取属性文件中的配置
最直接的办法是,使用AppContext.getProperty("cuba.trustedClientPassword"); 可以获取到系统中的web模块下的wep-app.pr ...
- 【BZOJ4671】异或图(斯特林反演)
[BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...
- 【转】STC51单片机下载程序的时候不要在VCC端接DHT11
今天使用51单片机学习板调试DHT11湿度传感器,下载程序的时候把DHT11烧掉了. 一开始我使用杜邦线把DHT11的VCC引脚接到学习板上的VCC端,GND接GND,数据端口接51单片机的P0.0. ...
- Eclipse 插件Maven在使用 add dependency,找不到包,解决办法
通过右键单击pom.xml文件选择maven –> add dependency 或者是打开pom.xml文件,选择dependencies –>add 时,搜索不到依赖的jar包,解决方 ...
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元
题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...
- intest
/* ============================================================================ Name : http.c Author ...