传送门

Solution

懒得写啦

Code

 #include<iostream>
#include<cstdio>
#include<cmath>
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;i++)
#define yes(i,a,b) for(Rg int i=a;i>=b;i--)
#define ll long long
using namespace std;
int read()
{
int x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
ll T,L,d,n,m,ans,c;
bool flag=;
ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);}
ll phi(ll x)
{
ll sm=x,y=x;
go(i,,sqrt(y))
{
if(x%i==)sm=sm/i*(i-);
while(x%i==)x/=i;
}
if(x>)sm=sm/x*(x-);
return sm;
}
ll mul(ll x,ll y,ll mod)
{
ll sm=;
while(y)
{
if(y&)sm=(sm+x)%mod;
x=(x<<)%mod;y>>=;
}
return sm;
}
ll ksm(ll x,ll y,ll mod)
{
ll sm=;
while(y)
{
if(y&)sm=mul(sm,x,mod);//注意这里直接乘起来会溢出
x=mul(x,x,mod);y>>=;
}
return sm;
}
int main()
{
while()
{
scanf("%lld",&L);if(!L)break;T++;flag=;ans=;
if(%L==){printf("Case %lld: 1\n",T);continue;}
d=gcd(L,);n=*L/d;m=phi(n);c=sqrt(m);
go(i,,c)
{
if(m%i==&&ksm(,i,n)==){ans=i;flag=;break;}
}
if(!flag)
yes(i,c,)
{
if(m%i==&&ksm(,m/i,n)==){ans=m/i;break;}
}
printf("Case %lld: %lld\n",T,ans);
}
return ;
}

Poj3696 The Lukiest Number的更多相关文章

  1. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  2. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  3. [POJ3696]The Luckiest number(数论)

    题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...

  4. POJ3696 The Luckiest Number 欧拉定理

    昨天终于把欧拉定理的证明看明白了...于是兴冲冲地写了2道题,发现自己啥都不会qwq 题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数. 这很有意思么... 首先, ...

  5. 「POJ3696」The Luckiest number【数论,欧拉函数】

    # 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...

  6. JavaScript Math和Number对象

    目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...

  7. Harmonic Number(调和级数+欧拉常数)

    题意:求f(n)=1/1+1/2+1/3+1/4-1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末) 知识点:      调和级数(即f(n))至今没有一个完全正确的公式, ...

  8. Java 特定规则排序-LeetCode 179 Largest Number

    Given a list of non negative integers, arrange them such that they form the largest number. For exam ...

  9. Eclipse "Unable to install breakpoint due to missing line number attributes..."

    Eclipse 无法找到 该 断点,原因是编译时,字节码改变了,导致eclipse无法读取对应的行了 1.ANT编译的class Eclipse不认,因为eclipse也会编译class.怎么让它们统 ...

随机推荐

  1. BZOJ4448[Scoi2015]情报传递——主席树+LCA

    题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有 若T名(可能没有)下线,除1名大头目外其余n-1名情报员有且仅有1名上线.奈特公司纪律森严 ...

  2. day9-13 linux基础

    有道云笔记链接 http://note.youdao.com/noteshare?id=207be3d6bd79e9ff2e30b160bca1fd87

  3. MT【50】高中曲线系集大成之双切线法

    [历史使人聪明,诗歌使人机智,数学使人精细,哲学使人深邃,道德使人严肃,逻辑与修辞使人善辩.--- Bacon,Francis] 练习: 评:这道2011高考题的解析做法参考答案也值得一看,但我这边在 ...

  4. sharepoint my site setting

    参考这个guide : http://technet.microsoft.com/en-us/library/ee624362.aspx User profile service 不能打开, 原因是s ...

  5. 51nod1236 序列求和 V3 【数学】

    题目链接 51nod1236 题解 用特征方程求得斐波那契通项: \[f(n) = \frac{(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{ ...

  6. qq空间爬取

    QQ_spider github传送门 QQ空间spider总结 花了将近3天吧,完成了低配版qq空间的爬虫,终于能上线刚一波了,还是蛮期待的. 流程很简单,模拟登录 ==>采集==>保存 ...

  7. SSM框架中的前后端分离

    认识前后端分离 在传统的web应用开发中,大多数的程序员会将浏览器作为前后端的分界线.将浏览器中为用户进行页面展示的部分称之为前端,而将运行在服务器,为前端提供业务逻辑和数据准备的所有代码统称为后端. ...

  8. A1097. Deduplication on a Linked List

    Given a singly linked list L with integer keys, you are supposed to remove the nodes with duplicated ...

  9. springboot的起步依赖

    加载自动配置的方式2: springboot读取配置文件的方式: 1.读取核心配置文件 核心配置文件是指在resources根目录下的application.properties或applicatio ...

  10. 洛谷 P3159(BZOJ 2668)[CQOI2012]交换棋子

    有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换 ...