论文笔记之:DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
2017-06-12 21:29:06
引言部分:
本文提出一种对偶学习模式的 GAN 网络结构来进行 image to image translation。现有的图像之间转换的方法,大部分都是需要图像对的方法,但是实际上有的场景下,很难得到这样的图像对。如何利用多个 domain 之间的关系,不需要图像对就可以进行图像之间的转换,那将会是一个很 cool 的工作,而本文就是将 GAN 和 Dualing Learning 结合起来完成了该项目,从效果来看,还是可以的。
关于 Dualing Learning:
主要是参考了 NIPS 2016 年的一篇文章,做机器翻译的。是想将 domain A 到 domain B 之间的转换,构成一个闭环(loop)。通过 minimize 该图 和 重构图像之间的 loss 来优化学习的目标。这里也是,给定一个 domain image A,用一个产生器 P 来生成对应的 domain image B,由于没有和A匹配的图像对,这里是没有 GT 的。那么如何衡量 产生器造出的图像 P(A, z) 的质量呢?如何该图伪造的很好,那么反过来,用另一个 产生器 Q,应该可以很好的恢复出该图,即:Q(P(A, z), z') 应该和 A 是类似的,即:|| Q(P(A, z), z') - A ||。对于 domain image B 也是如此,那么有了另一个 重构误差。
这样,除了在 minimize 两个 产生器的loss的同时,也需要考虑到这两个重构误差,从而使得最终转换的结果有保证。
==>> Training Target:
1. 用 L1 loss 来尽可能使得图像清晰;
2. 用 两个 GAN 来实现 domain 之间的切换;
论文笔记之:DualGAN: Unsupervised Dual Learning for Image-to-Image Translation的更多相关文章
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- 论文笔记(2):A fast learning algorithm for deep belief nets.
论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...
- 【论文笔记】DeepOrigin: End-to-End Deep Learning for Detection of New Malware Families
DeepOrigin: End-to-End Deep Learning for Detection of New Malware Families 标签(空格分隔): 论文 论文基本信息 会议: I ...
- 论文笔记 - An Explanation of In-context Learning as Implicit Bayesian Inference
这位更是重量级.这篇论文对于概率论学的一塌糊涂的我简直是灾难. 由于 prompt 的分布与预训练的分布不匹配(预训练的语料是自然语言,而 prompt 是由人为挑选的几个样本拼接而成,是不自然的自然 ...
- 论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 traini ...
- 论文笔记之:Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...
- SfMLearner论文笔记——Unsupervised Learning of Depth and Ego-Motion from Video
1. Abstract 提出了一种无监督单目深度估计和相机运动估计的框架 利用视觉合成作为监督信息,使用端到端的方式学习 网络分为两部分(严格意义上是三个) 单目深度估计 多视图姿态估计 解释性网络( ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Deep Learning论文笔记之(三)单层非监督学习网络分析
Deep Learning论文笔记之(三)单层非监督学习网络分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感 ...
随机推荐
- double,失去精度
double,失去精度: amount.doubleValue() * 使用 BigDecimal: public static double add(double d1,double d2){ Bi ...
- 设计模式之Composite(组合)(转)
Composite定义: 将对象以树形结构组织起来,以达成"部分-整体" 的层次结构,使得客户端对单个对象和组合对象的使用具有一致性. Composite比较容易理解,想到Comp ...
- linux常用命令:cat 命令
cat命令的用途是连接文件或标准输入并打印.这个命令常用来显示文件内容,或者将几个文件连接起来显示,或者从标准输入读取内容并显示,它常与重定向符号配合使用. 1.命令格式: cat [选项] [文件] ...
- DOM jquery
DOM 文档对象模型(Document Object Model)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.我们最为关心的是,DOM ...
- Django框架----视图(views)
Django的Views(视图) 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误 ...
- java.lang.IllegalStateException: Failed to check the status of the service
java.lang.IllegalStateException: Failed to check the status of the service com.pinyougou.sellergoods ...
- Docker学习笔记之从镜像仓库获得镜像
0x00 概述 之前我们说到了,Docker 与其他虚拟化软件的一处不同就是将镜像管理纳入到了功能之中.实现虚拟化只是程序能够无缝移植的一部分,而有了镜像管理,就真正取代了我们在移植过程中的繁琐操作. ...
- 禁止单个IP或ip段访问
//IP禁止判断接口,返回true则为找到 function checkIp($ip, $ipbanned) { $ipbannedFlag = false; if (!empty($ipbanned ...
- python面向对象三大特性之一继承、多态、封装
继承,即在定义一个类时,以另一个类为参数,则称这个新定义的类继承了参数类,父类又称为基类. 单继承表示只继承一个类,多继承表示继承多个类. class parent1: pass class pare ...
- JAVA的内存模型及结构
所有的Java开发人员可能会遇到这样的困惑?我该为堆内存设置多大空间呢?OutOfMemoryError的异常到底涉及到运行时数据的哪块区域?该怎么解决呢? Java内存模型 Java内存模型在JVM ...