(转)十分钟入门pandas
本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。
习惯上,我们会按下面格式引入所需要的包:
一、 创建对象
可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。
1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
4、查看不同列的数据类型:
5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:
二、 查看数据
详情请参阅:Basics Section
1、 查看frame中头部和尾部的行:
2、 显示索引、列和底层的numpy数据:
3、 describe()函数对于数据的快速统计汇总:
4、 对数据的转置:
5、 按轴进行排序
6、 按值进行排序
三、 选择
虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式:.at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。
l 获取
1、 选择一个单独的列,这将会返回一个Series,等同于df.A:
2、 通过[]进行选择,这将会对行进行切片
l 通过标签选择
1、 使用标签来获取一个交叉的区域
2、 通过标签来在多个轴上进行选择
3、 标签切片
4、 对于返回的对象进行维度缩减
5、 获取一个标量
6、 快速访问一个标量(与上一个方法等价)
l 通过位置选择
1、 通过传递数值进行位置选择(选择的是行)
2、 通过数值进行切片,与numpy/python中的情况类似
3、 通过指定一个位置的列表,与numpy/python中的情况类似
4、 对行进行切片
5、 对列进行切片
6、 获取特定的值
l 布尔索引
1、 使用一个单独列的值来选择数据:
2、 使用where操作来选择数据:
3、 使用isin()方法来过滤:
l 设置
1、 设置一个新的列:
2、 通过标签设置新的值:
3、 通过位置设置新的值:
4、 通过一个numpy数组设置一组新值:
上述操作结果如下:
5、 通过where操作来设置新的值:
四、 缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。
1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、
2、 去掉包含缺失值的行:
3、 对缺失值进行填充:
4、 对数据进行布尔填充:
五、 相关操作
详情请参与 Basic Section On Binary Ops
l 统计(相关操作通常情况下不包括缺失值)
1、 执行描述性统计:
2、 在其他轴上进行相同的操作:
3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:
l Apply
1、 对数据应用函数:
l 直方图
具体请参照:Histogramming and Discretization
l 字符串方法
Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.
六、 合并
Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section
l Concat
l Join 类似于SQL类型的合并,具体请参阅:Database style joining
l Append 将一行连接到一个DataFrame上,具体请参阅Appending:
七、 分组
对于”group by”操作,我们通常是指以下一个或多个操作步骤:
l (Splitting)按照一些规则将数据分为不同的组;
l (Applying)对于每组数据分别执行一个函数;
l (Combining)将结果组合到一个数据结构中;
详情请参阅:Grouping section
1、 分组并对每个分组执行sum函数:
2、 通过多个列进行分组形成一个层次索引,然后执行函数:
八、 Reshaping
详情请参阅 Hierarchical Indexing 和 Reshaping。
l Stack
l 数据透视表,详情请参阅:Pivot Tables.
可以从这个数据中轻松的生成数据透视表:
九、 时间序列
Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。
1、 时区表示:
2、 时区转换:
3、 时间跨度转换:
4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。
十、 Categorical
从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introduction和API documentation。
1、 将原始的grade转换为Categorical数据类型:
2、 将Categorical类型数据重命名为更有意义的名称:
3、 对类别进行重新排序,增加缺失的类别:
4、 排序是按照Categorical的顺序进行的而不是按照字典顺序进行:
5、 对Categorical列进行排序时存在空的类别:
十一、 画图
具体文档参看:Plotting docs
对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:
十二、 导入和保存数据
l CSV,参考:Writing to a csv file
1、 写入csv文件:
2、 从csv文件中读取:
l HDF5,参考:HDFStores
1、 写入HDF5存储:
2、 从HDF5存储中读取:
l Excel,参考:MS Excel
1、 写入excel文件:
2、 从excel文件中读取:
转自:http://www.cnblogs.com/chaosimple/p/4153083.html
(转)十分钟入门pandas的更多相关文章
- 十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))
十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的 ...
- 转载:Python十分钟入门
Python十分钟入门:http://python.jobbole.com/23425/
- 十分钟掌握pandas(pandas官方文档翻译)
十分钟掌握pandas 文档版本:0.20.3 这是一个对pandas简短的介绍,适合新用户.你可以在Cookbook中查看更详细的内容. 通常,我们要像下面一样导入一些包. In [1]: impo ...
- 十分钟了解pandas
十分钟掌握Pandas(上)--来自官网API 一.numpy和pandas numpy是矩阵计算库,pandas是数据分析库,关于百度百科,有对pandas的介绍. pandas 是基于NumPy ...
- 十分钟掌握Pandas(上)——来自官网API
十分钟掌握Pandas(上)——来自官网API 其实不止10分钟,这么多,至少一天 一.numpy和pandas numpy是矩阵计算库,pandas是数据分析库,关于百度百科,有对pandas的介绍 ...
- Python学习总结(一)—— 十分钟入门
一.Python概要 1.1.语言简介 Python是一种解释型.面向对象.动态数据类型的高级程序设计语言,具有20多年的发展历史,成熟且稳定. 用任何编程语言来开发程序,都是为了让计算机干活,比如下 ...
- python 10分钟入门pandas
本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...
- 十分钟入门流处理框架Flink --实时报表场景的应用
随着业务的发展,数据量剧增,我们一些简单报表大盘类的任务,就不能简单的依赖于RDBMS了,而是依赖于数仓之类的大数据平台. 数仓有着巨量数据的存储能力,但是一般都存在一定数据延迟,所以要想完全依赖数数 ...
- 5分钟入门pandas
pandas是在数据处理.数据分析以及数据可视化上都有比较多的应用,这篇文章就来介绍一下pandas的入门.劳动节必须得劳动劳动 1. 基础用法 以下代码在jupyter中运行,Python 版本3. ...
随机推荐
- 201521123028 《Java程序设计》第8周学习总结
1. 本周学习总结 2. 书面作业 Q1.List中指定元素的删除(题目4-1) 1.1 实验总结 Ans: 在这一题中我们需要写两个函数,分别是remove()和convertStringToLis ...
- 201521123022 《Java程序设计》 第十四周学习总结
1. 本章学习总结 2. 书面作业 Q1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自己的学号.姓名),在自己建立的数据库上执行常见SQL语句(截图) ...
- Mysql双机热备配置(超详细多图版)
一.双击热备介绍 1.基本概念 双机热备特指基于高可用系统中的两台服务器的热备(或高可用),双机高可用按工作中的切换方式分为:主-备方式(Active-Standby方式)和双主机方式(Active- ...
- ACM退役记&&回忆录
ACM退役记 2017.9.19星期二,"九一八事变"八十六年后的第二天,永远记住这个日子,刚好是我报名ACM到现在,刚好满一年,而今天正是我注册杭州电子科技大学OJ的时间(就是这 ...
- Struts2第十一篇【简单UI标签、数据回显】
Struts2UI标签 Sturts2为了简化我们的开发,也为我们提供了UI标签-也就是显示页面的标签-.. 但是呢,Struts2是服务端的框架,因此使用页面的标签是需要在服务器端解析然后再被浏览器 ...
- 接口测试入门(3)--使用httpClient进行登录用例操作/set-cookies验证/ List<NameValuePair>设置post参数/json解析
(最近学的都是很基础的接口测试,都是基于UI界面可见的接口,就是发请求,接收响应,分析返回的结果,校验,对共通模块进行封装,仅此而已,其实做自动化的思路基本都是如此,UI也是.) 现在开始用httpC ...
- java面试题整理(1)
1.Equals与==的区别? ==是判断两个变量或者实例是不是指向同一个内存地址 equals是判断两个变量或者实例所指向的内存地址中的值是不是相同 2.Object有哪些公用方法? 方法equal ...
- 一条语句导致CPU持续100%
一大早收到一堆CPU预警邮件,通常每天只在统计作业执行期间会收到2~3封CPU预警邮件.这次的预警来自另一台服务器,并且明细数据显示其CPU一直维持在49%.登录到服务器,查看任务管理器(查看资源监视 ...
- sql server 把数据 复制成脚本文件
问题描述:想把一个数据库里的表和字段复制到另一个数据库里: 方法一:a.生成脚本文件 选择数据库右键->任务->生成脚本: b. 选择特定的数据库对象->下一步: c.高级-> ...
- springboot+swagger2
springboot+swagger2 小序 新公司的第二个项目,是一个配置管理终端机(比如:自动售卖机,银行取款机)的web项目,之前写过一个分模块的springboot框架,就在那个框架基础上进行 ...