本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。

习惯上,我们会按下面格式引入所需要的包:

一、            创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

4、查看不同列的数据类型:

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

二、            查看数据

详情请参阅:Basics Section

1、  查看frame中头部和尾部的行:

2、  显示索引、列和底层的numpy数据:

3、  describe()函数对于数据的快速统计汇总:

4、  对数据的转置:

5、  按轴进行排序

6、  按值进行排序

三、            选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式:.at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing

l  获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A:

2、 通过[]进行选择,这将会对行进行切片

l  通过标签选择

1、 使用标签来获取一个交叉的区域

2、 通过标签来在多个轴上进行选择

3、 标签切片

4、 对于返回的对象进行维度缩减

5、 获取一个标量

6、 快速访问一个标量(与上一个方法等价)

l  通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

2、 通过数值进行切片,与numpy/python中的情况类似

3、 通过指定一个位置的列表,与numpy/python中的情况类似

4、 对行进行切片

5、 对列进行切片

6、 获取特定的值

l  布尔索引

1、 使用一个单独列的值来选择数据:

2、 使用where操作来选择数据:

3、 使用isin()方法来过滤:

l  设置

1、 设置一个新的列:

2、 通过标签设置新的值:

3、 通过位置设置新的值:

4、 通过一个numpy数组设置一组新值:

上述操作结果如下:

5、 通过where操作来设置新的值:

四、            缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

2、  去掉包含缺失值的行:

3、  对缺失值进行填充:

4、  对数据进行布尔填充:

五、            相关操作

详情请参与 Basic Section On Binary Ops

l  统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

2、  在其他轴上进行相同的操作:

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

l  Apply

1、  对数据应用函数:

l  直方图

具体请参照:Histogramming and Discretization

l  字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

六、            合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

l  Concat

l  Join 类似于SQL类型的合并,具体请参阅:Database style joining

l  Append 将一行连接到一个DataFrame上,具体请参阅Appending

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l  (Splitting)按照一些规则将数据分为不同的组;

l  (Applying)对于每组数据分别执行一个函数;

l  (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

1、  分组并对每个分组执行sum函数:

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

八、            Reshaping

详情请参阅 Hierarchical Indexing 和 Reshaping

l  Stack

l  数据透视表,详情请参阅:Pivot Tables.

可以从这个数据中轻松的生成数据透视表:

九、            时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

1、  时区表示:

2、  时区转换:

3、  时间跨度转换:

4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。

十、            Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

1、  将原始的grade转换为Categorical数据类型:

2、  将Categorical类型数据重命名为更有意义的名称:

3、  对类别进行重新排序,增加缺失的类别:

4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

5、  对Categorical列进行排序时存在空的类别:

十一、           画图

具体文档参看:Plotting docs

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

十二、           导入和保存数据

l  CSV,参考:Writing to a csv file

1、  写入csv文件:

2、  从csv文件中读取:

l  HDF5,参考:HDFStores

1、  写入HDF5存储:

2、  从HDF5存储中读取:

l  Excel,参考:MS Excel

1、  写入excel文件:

2、  从excel文件中读取:

转自:http://www.cnblogs.com/chaosimple/p/4153083.html

(转)十分钟入门pandas的更多相关文章

  1. 十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))

    十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的 ...

  2. 转载:Python十分钟入门

    Python十分钟入门:http://python.jobbole.com/23425/

  3. 十分钟掌握pandas(pandas官方文档翻译)

    十分钟掌握pandas 文档版本:0.20.3 这是一个对pandas简短的介绍,适合新用户.你可以在Cookbook中查看更详细的内容. 通常,我们要像下面一样导入一些包. In [1]: impo ...

  4. 十分钟了解pandas

    十分钟掌握Pandas(上)--来自官网API 一.numpy和pandas numpy是矩阵计算库,pandas是数据分析库,关于百度百科,有对pandas的介绍. pandas 是基于NumPy ...

  5. 十分钟掌握Pandas(上)——来自官网API

    十分钟掌握Pandas(上)——来自官网API 其实不止10分钟,这么多,至少一天 一.numpy和pandas numpy是矩阵计算库,pandas是数据分析库,关于百度百科,有对pandas的介绍 ...

  6. Python学习总结(一)—— 十分钟入门

    一.Python概要 1.1.语言简介 Python是一种解释型.面向对象.动态数据类型的高级程序设计语言,具有20多年的发展历史,成熟且稳定. 用任何编程语言来开发程序,都是为了让计算机干活,比如下 ...

  7. python 10分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...

  8. 十分钟入门流处理框架Flink --实时报表场景的应用

    随着业务的发展,数据量剧增,我们一些简单报表大盘类的任务,就不能简单的依赖于RDBMS了,而是依赖于数仓之类的大数据平台. 数仓有着巨量数据的存储能力,但是一般都存在一定数据延迟,所以要想完全依赖数数 ...

  9. 5分钟入门pandas

    pandas是在数据处理.数据分析以及数据可视化上都有比较多的应用,这篇文章就来介绍一下pandas的入门.劳动节必须得劳动劳动 1. 基础用法 以下代码在jupyter中运行,Python 版本3. ...

随机推荐

  1. 201521123028 《Java程序设计》第8周学习总结

    1. 本周学习总结 2. 书面作业 Q1.List中指定元素的删除(题目4-1) 1.1 实验总结 Ans: 在这一题中我们需要写两个函数,分别是remove()和convertStringToLis ...

  2. 201521123022 《Java程序设计》 第十四周学习总结

    1. 本章学习总结 2. 书面作业 Q1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自己的学号.姓名),在自己建立的数据库上执行常见SQL语句(截图) ...

  3. Mysql双机热备配置(超详细多图版)

    一.双击热备介绍 1.基本概念 双机热备特指基于高可用系统中的两台服务器的热备(或高可用),双机高可用按工作中的切换方式分为:主-备方式(Active-Standby方式)和双主机方式(Active- ...

  4. ACM退役记&&回忆录

    ACM退役记 2017.9.19星期二,"九一八事变"八十六年后的第二天,永远记住这个日子,刚好是我报名ACM到现在,刚好满一年,而今天正是我注册杭州电子科技大学OJ的时间(就是这 ...

  5. Struts2第十一篇【简单UI标签、数据回显】

    Struts2UI标签 Sturts2为了简化我们的开发,也为我们提供了UI标签-也就是显示页面的标签-.. 但是呢,Struts2是服务端的框架,因此使用页面的标签是需要在服务器端解析然后再被浏览器 ...

  6. 接口测试入门(3)--使用httpClient进行登录用例操作/set-cookies验证/ List<NameValuePair>设置post参数/json解析

    (最近学的都是很基础的接口测试,都是基于UI界面可见的接口,就是发请求,接收响应,分析返回的结果,校验,对共通模块进行封装,仅此而已,其实做自动化的思路基本都是如此,UI也是.) 现在开始用httpC ...

  7. java面试题整理(1)

    1.Equals与==的区别? ==是判断两个变量或者实例是不是指向同一个内存地址 equals是判断两个变量或者实例所指向的内存地址中的值是不是相同 2.Object有哪些公用方法? 方法equal ...

  8. 一条语句导致CPU持续100%

    一大早收到一堆CPU预警邮件,通常每天只在统计作业执行期间会收到2~3封CPU预警邮件.这次的预警来自另一台服务器,并且明细数据显示其CPU一直维持在49%.登录到服务器,查看任务管理器(查看资源监视 ...

  9. sql server 把数据 复制成脚本文件

    问题描述:想把一个数据库里的表和字段复制到另一个数据库里: 方法一:a.生成脚本文件 选择数据库右键->任务->生成脚本: b. 选择特定的数据库对象->下一步: c.高级-> ...

  10. springboot+swagger2

    springboot+swagger2 小序 新公司的第二个项目,是一个配置管理终端机(比如:自动售卖机,银行取款机)的web项目,之前写过一个分模块的springboot框架,就在那个框架基础上进行 ...