题目链接

\(Description\)

  有一张\(n\)个点的完全图,从\(0\)到\(n-1\)标号,每两点\(i,j\)间的边权为\(i\oplus j\)。求其最小生成树边权之和。

\(Solution\)

  为方便,以下点从\(0\)到\(n\)编号。

  每个点\(x\)应和\(x\oplus lowbit(x)\)相连,边权为\(lowbit(x)\)(\(lowbit(x)\)会和\(0\)相连,所以一定能构成树),所以答案为\(\sum_{i=1}^nlb(i)\)。

  继续优化。注意到\(lb(i)\)一定是某个2次幂,所以令\(f(i)\)表示\(1\leq x\leq n\)且满足\(lb(x)=i\)的\(x\)的个数,则答案为\(\sum_{i=1}^nf(i)\times i\ (f(i)>0)=\sum_{i=0}^{\lfloor\log n\rfloor}f(2^i)\times 2^i\)

  \(f(i)\)显然可以用数位DP算,但是太麻烦了。。

  一些满足\(lb(i)=x\)的数,它们间隔至少是\(2x\)。比如\(x=(100)_2\),则\(i=100,1100,10100...\)(相差\(1000\))。所以\(f(x)=\lfloor\frac{n-x}{2x}\rfloor+1\ (1\leq x\leq n,x=2^y)\)。


  还有DP求\(\sum_{i=1}^nlb(i)\)的做法,好长啊...先不看了。


#include <cstdio>

int main()
{
long long n,res=0;
scanf("%I64d",&n); --n;
for(long long x=1; x<=n; x<<=1)
res+=x*((n-x)/(x<<1)+1);
printf("%I64d\n",res); return 0;
}

Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)的更多相关文章

  1. CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)

    <题目链接> 题目大意: 给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值. 解题分析: 数据较大,$10^{12}$个点的完全图,然后 ...

  2. Codeforces 862C - Mahmoud and Ehab and the xor

    862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...

  3. CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】

    <题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...

  4. Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))

    题目: 解题思路 这题就是0,1,2...n-1总共n个数字形成的最小生成树. 我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值. 要计算n个数字的情 ...

  5. CodeForces - 862C Mahmoud and Ehab and the xor(构造)

    题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...

  6. Coderfroces 862 C. Mahmoud and Ehab and the xor

    C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...

  7. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  8. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  9. Codeforces 862A Mahmoud and Ehab and the MEX

    传送门:CF-862A A. Mahmoud and Ehab and the MEX time limit per test 2 seconds memory limit per test 256 ...

随机推荐

  1. dynamic

    dynamic的特性很多,好像和反射也有关,不过这里先介绍一个特性,关于反射的再补充. 我们来看一个方法: public virtual ActionResult Insert(T info) 有一个 ...

  2. PHP魔术方法之__invoke()

    将对象当作函数来使用时,会自动调用该方法. class ShowProfile extends Controller { public function __invoke($id) { return ...

  3. [转载]Cross-Platform Development in Visual Studio

    http://msdn.microsoft.com/en-us/library/dn771552.aspx http://www.cnblogs.com/mengkzhaoyun/p/4152823. ...

  4. 第9月第26天 pairs和ipairs cocos2dx 动画

    1. a={ ip = "127.0.0.1", port = 6789 } for i,v in pairs(a) do print(i,v) end a={1} for i,v ...

  5. DataTable转Json(兼容easyUI特殊json分页)

    用法:上述方法是DataTable的扩展方法:静态类静态方法,变量前用this (一)ps:普通datatable转标准json DataTable dt = 获取db中的datatable数据. s ...

  6. Java练习之使用StringBuilder

    package string.demo; /* * 将数组变为字符串输出 */ public class StringBuilderTest { /** * @param args */ public ...

  7. 【ARTS】01_06_左耳听风-20181217~1223

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  8. shell脚本练习【转】

    1.写一个脚本,判断当前系统上所有用户的shell是否为可登录shell(即用户的shell不是/sbin/nologin):分别这两类用户的个数:通过字符串比较来实现: #脚本内容 [root@ce ...

  9. H5页面调用手机打电话功能

    <head>里面加上: <meta name="format-detection" content="telephone=yes"/> ...

  10. 网络协议之TLS

    前言 由于在TCP.UDP等方式传输数据时,数据包有可能被其他人截获,并解析出信息,这就给信息安全带来了很大的挑战.最初的SSL协议被网景公司提出,它不会影响上层协议(如HTTP.电子邮件等),但可以 ...