Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)
\(Description\)
有一张\(n\)个点的完全图,从\(0\)到\(n-1\)标号,每两点\(i,j\)间的边权为\(i\oplus j\)。求其最小生成树边权之和。
\(Solution\)
为方便,以下点从\(0\)到\(n\)编号。
每个点\(x\)应和\(x\oplus lowbit(x)\)相连,边权为\(lowbit(x)\)(\(lowbit(x)\)会和\(0\)相连,所以一定能构成树),所以答案为\(\sum_{i=1}^nlb(i)\)。
继续优化。注意到\(lb(i)\)一定是某个2次幂,所以令\(f(i)\)表示\(1\leq x\leq n\)且满足\(lb(x)=i\)的\(x\)的个数,则答案为\(\sum_{i=1}^nf(i)\times i\ (f(i)>0)=\sum_{i=0}^{\lfloor\log n\rfloor}f(2^i)\times 2^i\)
\(f(i)\)显然可以用数位DP算,但是太麻烦了。。
一些满足\(lb(i)=x\)的数,它们间隔至少是\(2x\)。比如\(x=(100)_2\),则\(i=100,1100,10100...\)(相差\(1000\))。所以\(f(x)=\lfloor\frac{n-x}{2x}\rfloor+1\ (1\leq x\leq n,x=2^y)\)。
还有DP求\(\sum_{i=1}^nlb(i)\)的做法,好长啊...先不看了。
#include <cstdio>
int main()
{
long long n,res=0;
scanf("%I64d",&n); --n;
for(long long x=1; x<=n; x<<=1)
res+=x*((n-x)/(x<<1)+1);
printf("%I64d\n",res);
return 0;
}
Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)的更多相关文章
- CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)
<题目链接> 题目大意: 给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值. 解题分析: 数据较大,$10^{12}$个点的完全图,然后 ...
- Codeforces 862C - Mahmoud and Ehab and the xor
862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】
<题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...
- Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))
题目: 解题思路 这题就是0,1,2...n-1总共n个数字形成的最小生成树. 我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值. 要计算n个数字的情 ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)
题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...
- Coderfroces 862 C. Mahmoud and Ehab and the xor
C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...
- Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)
Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...
- Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)
Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...
- Codeforces 862A Mahmoud and Ehab and the MEX
传送门:CF-862A A. Mahmoud and Ehab and the MEX time limit per test 2 seconds memory limit per test 256 ...
随机推荐
- redis支持的数据结构
redis数据库里面的每个键值对都是由对象组成的. 其中数据库键的值总是字符串对象. 数据库的值则可以是字符串对象(String),列表对象(list),哈希对象(Hash),集合对象(Set),有序 ...
- Linux ------清除内存中的cache
首先以Centos6.4的来说,Centos7有些区别 一.buffer/cache/swap的介绍 #cat /etc/redhat-release #查看系统版本 CentOS release ...
- UVALive - 4636 Cubist Artwork(贪心)
题目链接 题意 给出正视图和侧视图,判断最少用几个立方体 分析 若存在高度相同的立方块,则以数目多的那面为准. #include <iostream> #include <cstdi ...
- html5 canvas 垂直渐变描边
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Git Pull Failed: cannot lock ref 'refs/remotes/origin/xxxxxxxx': unable to resolve ref
1.xxxxxxxx代表目录名称,我要pull的目录是supman_creditmall_v5: 2.从代码库中pull代码时报这个错误,代码pull失败: 3.解决办法,看下图,删除文件后再pull ...
- Strange Queries(莫队)
题目 You are given an array with n integers a1, a2, ..., an, and q queries to answer. Each query consi ...
- python 的print和特殊方法 __str__和__repr__
先提出一个疑问,为什么print函数可以直接打印参数呢?即使是数字?例如print 1,就会打印1.我们知道1的类型是整型(题外话,在python中1是常量,也是类int的对象,而java中1只是常量 ...
- C语言字节对齐 __align(),__attribute((aligned (n))),#pragma pack(n)【转】
转自:https://www.cnblogs.com/ransn/p/5081198.html 转载地址 : http://blog.csdn.net/21aspnet/article/details ...
- Ansible Tower系列 三(使用tower执行一个任务)【转】
创建playbook Tower playbook 项目默认存在 /var/lib/awx/projects/ su - awx cd projects/ mkdir ansible-for-devo ...
- 一个无锁消息队列引发的血案(五)——RingQueue(中) 休眠的艺术
目录 (一)起因 (二)混合自旋锁 (三)q3.h 与 RingBuffer (四)RingQueue(上) 自旋锁 (五)RingQueue(中) 休眠的艺术 (六)RingQueue(中) 休眠的 ...