BP神经网络算法学习
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是眼下应用最广泛的神经网络模型之中的一个。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描写叙述这样的映射关系的数学方程。
一个神经网络的结构示意图例如以下所看到的。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。输入层神经元的个数由样本属性的维度决定,输出层神经元的个数由样本分类个数决定。隐藏层的层数和每层的神经元个数由用户指定。每一层包括若干个神经元,每一个神经元包括一个而阈值
,用来改变神经元的活性。网络中的弧线
表示前一层神经元和后一层神经元之间的权值。每一个神经元都有输入和输出。输入层的输入和输出都是训练样本的属性值。
对于隐藏层和输出层的输入
当中,
是由上一层的单元i到单元j的连接的权;
是上一层的单元i的输出;而
是单元j的阈值。
神经网络中神经元的输出是经由赋活函数计算得到的。该函数用符号表现单元代表的神经元活性。赋活函数一般使用simoid函数(或者logistic函数)。神经元的输出为:

除此之外,神经网络中有一个学习率(l)的概念,通常取0和1之间的值,并有助于找到全局最小。假设学习率太小,学习将进行得非常慢。假设学习率太大,可能出如今不适当的解之间摆动。
交代清楚了神经网络中基本要素,我们来看一下BP算法的学习过程:
BPTrain(){
初始化network的权和阈值。
while 终止条件不满足 {
for samples中的每一个训练样本X {
// 向前传播输入
for 隐藏或输出层每一个单元j {
;// 相对于前一层i,计算单元j的净输入
;// 计算单元j的输出
}
// 后向传播误差
for 输出层每一个单元j {
;// 计算误差
}
for 由最后一个到第一个隐藏层,对于隐藏层每一个单元j {
;// k是j的下一层中的神经元
}
for network中每一个权
{
; // 权增值
; // 权更新
}
for network中每一个偏差
{
; // 偏差增值
;// 偏差更新
}
}
}
算法基本流程就是:
1、初始化网络权值和神经元的阈值(最简单的办法就是随机初始化)
2、前向传播:依照公式一层一层的计算隐层神经元和输出层神经元的输入和输出。
3、后向传播:依据公式修正权值和阈值
直到满足终止条件。
算法中还有几点是须要说明的:
1、关于
,
是神经元的误差。
对于输出层神经元
,当中,
是单元j的实际输 出,而
是j基于给定训练样本的已知类标号的真正输出。
对于隐藏层神经元
,当中,
是由下一较高层中单元k到单元j的连接权,而
是单元k的误差。
权值增量是
,阈值增量是
,当中
是学习率。
对于
的推导採用了梯度下降的算法。推导的前提是保证输出单元的均方差最小。
,当中P是样本总数,m是输出层神经元个数
是样本实际输出,
是神经网络输出。
梯度下降思路就是对
求
的导数。
对于输出层:


当中的
就是
。
对于隐藏层:


当中
=
就是隐藏层的误差计算公式。
2、关于终止条件,能够有多种形式:
§ 前一周期全部的
都太小,小于某个指定的阈值。
§ 前一周期未正确分类的样本百分比小于某个阈值。
§ 超过预先指定的周期数。
§ 神经网络的输出值和实际输出值的均方误差小于某一阈值。
一般地,最后一种终止条件的准确率更高一些。
在实际使用BP神经网络的过程中,还会有一些实际的问题:
1、 样本处理。对于输出,假设仅仅有两类那么输出为0和1,仅仅有当
趋于正负无穷大的时候才会输出0,1。因此条件可适当放宽,输出>0.9时就觉得是1,输出<0.1时觉得是0。对于输入,样本也须要做归一化处理。
2、 网络结构的选择。主要是指隐藏层层数和神经元数决定了网络规模,网络规模和性能学习效果密切相关。规模大,计算量大,并且可能导致过度拟合;可是规模小,也可能导致欠拟合。
3、 初始权值、阈值的选择,初始值对学习结果是有影响的,选择一个合适初始值也很重要。
4、 增量学习和批量学习。上面的算法和数学推导都是基于批量学习的,批量学习适用于离线学习,学习效果稳定性好;增量学习使用于在线学习,它对输入样本的噪声是比較敏感的,不适合剧烈变化的输入模式。
5、 对于激励函数和误差函数也有其它的选择。
总的来说BP算法的可选项比較多,针对特定的训练数据往往有比較大的优化空间。
BP神经网络算法学习的更多相关文章
- bp神经网络算法
对于BP神经网络算法,由于之前一直没有应用到项目中,今日偶然之时 进行了学习, 这个算法的基本思路是这样的:不断地迭代优化网络权值,使得输入与输出之间的映射关系与所期望的映射关系一致,利用梯度下降的方 ...
- 二、单层感知器和BP神经网络算法
一.单层感知器 1958年[仅仅60年前]美国心理学家FrankRosenblant剔除一种具有单层计算单元的神经网络,称为Perceptron,即感知器.感知器研究中首次提出了自组织.自学习的思想, ...
- BP神经网络算法预测销量高低
理论以前写过:https://www.cnblogs.com/fangxiaoqi/p/11306545.html,这里根据天气.是否周末.有无促销的情况,来预测销量情况. function [ ma ...
- 数据挖掘系列(9)——BP神经网络算法与实践
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropaga ...
- BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的 ...
- [matlab]bp神经网络工具箱学习笔记
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural ne ...
- JAVA实现BP神经网络算法
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测. 简介 BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法 ...
- BP神经网络算法改进
周志华机器学习BP改进 试设计一个算法,能通过动态调整学习率显著提升收敛速度,编程实现该算法,并选择两个UCI数据集与标准的BP算法进行实验比较. 1.方法设计 传统的BP算法改进主要有两类: - 启 ...
- R_Studio(神经网络)BP神经网络算法预测销量的高低
BP神经网络 百度百科:传送门 BP(back propagation)神经网络:一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络 #设置文件工作区间 setwd('D:\\ ...
随机推荐
- hdu 2516(斐波拉切博弈)
题意:容易理解. 分析:通过枚举寻找规律,这就是做1堆或者2堆石子博弈的技巧!当为2或者3时,肯定是第二个人赢,当为4时,先去一个石子,然后当对方面临3,于是第一个人赢, 当为5时,取1时,第二个人赢 ...
- size_type、size_t、differentce_type以及ptrdiff_t
目录(?)[-] size_type size_t different_type ptrdiff_t size_t是unsigned类型,用于指明数组长度或下标,它必须是一个正数,std::siz ...
- 设置TextView控件的背景透明度和字体透明度
TextView tv = (TextView) findViewById(R.id.xx); 第1种:tv.setBackgroundColor(Color.argb(255, 0, 255, 0) ...
- Delphi 异或,英文为exclusive OR,或缩写成xor
异或,英文为exclusive OR,或缩写成xor 异或(xor)是一个数学运算符.它应用于逻辑运算.异或的数学符号为“⊕”,计算机符号为“xor”.其运算法则为: a⊕b = (¬a ∧ b) ∨ ...
- CListCtrl总结.xml
pre{ line-height:1; color:#d1653c; background-color:#000000; font-size:16px;}.sysFunc{color:#566d68; ...
- 关系数据库&&NoSQL数据库
在过去,我们只需要学习和使用一种数据库技术,就能做几乎所有的数据库应用开发.因为成熟稳定的关系数据库产品并不是很多,而供你选择的免费版本就更加少了,所以互联网领域基本上都选择了免费的MySQL数据库. ...
- Markdown使用记录
1,打开Markdown文件夹(已经解压好了) 2,运行markdownPad2.exe. 3,然后工具-选项-程序语言 改为中文. 4,帮助-Markdown激活. 5,打开激活工具,KG_tt7z ...
- 僵尸进程&孤儿进程
http://www.cnblogs.com/Anker/p/3271773.html
- Windows Azure 配置多个站点的虚拟网络连接
通过上一篇"Windows Azure 虚拟网络配置(Site to Site)" 我们建立了可以进行Site to Site连接的虚拟网络,配置过后有些朋友会有疑问:如果需要连接 ...
- bpl
RegisterClass LoadPackage Getprocaddress FindClass UnRegisterModuleClasses UnloadPackage