转载-KMP算法前缀数组优雅实现
转自:http://www.cnblogs.com/10jschen/archive/2012/08/21/2648451.html
我们在一个母字符串中查找一个子字符串有很多方法。KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度。
当然我们可以看到这个算法针对的是子串有对称属性,如果有对称属性,那么就需要向前查找是否有可以再次匹配的内容。
在KMP算法中有个数组,叫做前缀数组,也有的叫next数组,每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符,当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。
这个next数组的求法是KMP算法的关键,但不是很好理解,我在这里用通俗的话解释一下,看到别的地方到处是数学公式推导,看得都蛋疼,这个篇文章仅贡献给不喜欢看数学公式又想理解KMP算法的同学。
1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。
位置i |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
前缀next[i] |
0 |
0 |
0 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
4 |
0 |
子串 |
a |
g |
c |
t |
a |
g |
c |
a |
g |
c |
t |
a |
g |
c |
t |
g |
申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。
(1)逐个查找对称串。
这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。
第1个a无对称,所以对称程度0
前两个ag无对称,所以也是0
依次类推前面0-4都一样是0
前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2
这里要注意了,想是这样想,编程怎么实现呢?
只要按照下面的规则:
a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。
b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。
c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。
当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。
(2)回头来找对称性
这里已经不能继承前面了,但是还是找对称成都嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。
在这里依然用上面表中一段来举个例子:
位置i=0到14如下,我加的括号只是用来说明问题:
(a g c t a g c )( a g c t a g c) t
我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。
这里首要要申明几个事实
1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。
2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。
如下图说明。
从上面的理论我们就能得到下面的前缀next数组的求解算法。
void SetPrefix(const char *Pattern, int prefix[])
{
int len=CharLen(Pattern);//模式字符串长度。
prefix[0]=0;
for(int i=1; i<len; i++)
{
int k=prefix[i-1];
//不断递归判断是否存在子对称,k=0说明不再有子对称,Pattern[i] != Pattern[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推
while( Pattern[i] != Pattern[k] && k!=0 )
k=prefix[k-1]; //继续递归
if( Pattern[i] == Pattern[k])//找到了这个子对称,或者是直接继承了前面的对称性,这两种都在前面的基础上++
prefix[i]=k+1;
else
prefix[i]=0; //如果遍历了所有子对称都无效,说明这个新字符不具有对称性,清0
}
}
通过这个说明,估计能够理解KMP的next求法原理了,剩下的就很简单了。我自己也有点晕了,实在不喜欢那些数学公式,所以用形象逻辑思维方法总结了一下。
////////
KMP还有一种写法:这个写法是经过N个人优化的:-----------------------------??????

1 int j = -1, i = 0;
2 next[0] = -1;
3 while(i < len)
4 {
5 if(j == -1 || ss[i] == ss[j])
6 {
7
8 i++;
9 j++;
10 next[i] = j;
11 }
12 else
13 {
14 j = next[j];
15 }
16 }

转载-KMP算法前缀数组优雅实现的更多相关文章
- POJ-2752(KMP算法+前缀数组的应用)
Seek the Name, Seek the Fame POJ-2752 本题使用的算法还是KMP 最主要的片段就是前缀数组pi的理解,这里要求解的纸盒pi[n-1]有关,但是还是需要使用一个循环来 ...
- KMP算法&next数组总结
http://www.cnblogs.com/yjiyjige/p/3263858.html KMP算法应该是每一本<数据结构>书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年 ...
- KMP算法 Next数组详解
题面 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百 ...
- 第4章学习小结_串(BF&KMP算法)、数组(三元组)
这一章学习之后,我想对串这个部分写一下我的总结体会. 串也有顺序和链式两种存储结构,但大多采用顺序存储结构比较方便.字符串定义可以用字符数组比如:char c[10];也可以用C++中定义一个字符串s ...
- 【文文殿下】浅谈KMP算法next数组与循环节的关系
KMP算法 KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数. KMP算法是利用next数组进行自匹配,然后来进行匹配的. Next数组 Next数 ...
- 转载 - KMP算法
出处:http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html KMP算法 在介绍KMP算法之前,先介绍一下BF算法. 一. ...
- 数据结构之KMP算法next数组
我们要找到一个短字符串(模式串)在另一个长字符串(原始串)中的起始位置,也就是模式匹配,最关键的是找到next数组.最简单的算法就是用双层循环来解决,但是这种算法效率低,kmp算法是针对模式串自身的特 ...
- KMP算法next数组求解
关于KMP算法,许多教材用的是递推式求解,虽然代码简洁,但是有些不好理解,这里我介绍一种迭代求next数组的方法 KMP算法关键部分就是滑动模式串,我们可以每次滑动一个单位,直到出现可能匹配的情况,此 ...
- poj1961(kmp算法next数组应用)
题目链接:https://vjudge.net/problem/POJ-1961 题意:给定一个长为n的字符串(n<=1e6),对于下标i(2<=i<=n),如果子串s(1...i) ...
随机推荐
- 第一次写python
这是一个在BJDP上学习Coding Kata的时候用到的一个练习,原来打算用Java写的,但是一想正好是学习的好机会. 就用Python了.第一次,写的有些复杂. 这个题目是关于购买图书的打折信息的 ...
- 团体程序设计天梯赛-练习集L1-018. 大笨钟
L1-018. 大笨钟 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 微博上有个自称“大笨钟V”的家伙,每天敲钟催促码农们爱惜 ...
- 利用钩子函数来捕捉键盘响应的windows应用程序
一:引言: 你也许一直对金山词霸的屏幕抓词的实现原理感到困惑,你也许希望将你的键盘,鼠标的活动适时的记录下来,甚至你想知道木马在windows操作系统是怎样进行木马dll的加载的…..其实这些都是用到 ...
- uva 10271
DP 状态转移方程 dp[i][j] = min(dp[i-1][j], dp[i-2][j-1] + w)) dp[i][j] 指的是前i个筷子组成j组所花费的最小值 考虑第i个筷子是否参与第j组 ...
- 用Vue.js和Webpack开发Web在线钢琴
缘起 由于童心未泯,之前在手机上玩过钢琴模拟App,但是手机屏幕太小,始终觉得不过瘾.其实对于我这个连基本乐理都不懂的"乐盲"来说,就算给我一台真正的钢琴,我也玩不转.不过是图个新 ...
- 如何通过 OAuth 2.0 使 iOS Apps 集成 LinkedIn 登录功能?
社交网络早已成为人们日常生活的一部分.其实,社交网络也是编程生活的一部分,大多数 App 必须通过某种方式与社交网络交互,传送或接收与用户相关的数据.大多数情况下,用户需要登录某种社交网络,授权 Ap ...
- POJ3258River Hopscotch(二分)
http://poj.org/problem?id=3258 题意:有一条很长很直的河距离为L,里边有n块石头,不包括起点和终点的那两块石头,奶牛们会从一个石头跳到另外一个,但因为有的石头隔得太近了, ...
- linux2.6中的工作队列接口 workqueue_struct
http://blog.csdn.net/sfrysh/article/details/5801786 工作队列接口 工作队列接口是在2.5的开发过程中引入的,用于取代任务队列接口(用于调 度内核任务 ...
- thinkphp URL相关
具体详见tp文档. 此处仅做学习笔记. 后缀配置: // 模板文件后缀名 'TMPL_TEMPLATE_SUFFIX'=>'.html', // 伪静态文件后缀名 'URL_HTML_SUFFI ...
- mybatis的知识点总结
1.接口绑定:两种方法,基于注解或者基于xml文档mapper,但要注意mapper的namespace要与接口路径完全一致. 2.orm格式转换:通过设置resultMap和ResultType,将 ...