转载 Deep learning:四(logistic regression练习)
前言:
本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html。这里给出的训练样本的特征为80个学生的两门功课的分数,样本值为对应的同学是否允许被上大学,如果是允许的话则用’1’表示,否则不允许就用’0’表示,这是一个典型的二分类问题。在此问题中,给出的80个样本中正负样本各占40个。而这节采用的是logistic regression来求解,该求解后的结果其实是一个概率值,当然通过与0.5比较就可以变成一个二分类问题了。
实验基础:
在logistic regression问题中,logistic函数表达式如下:

这样做的好处是可以把输出结果压缩到0~1之间。而在logistic回归问题中的损失函数与线性回归中的损失函数不同,这里定义的为:

如果采用牛顿法来求解回归方程中的参数,则参数的迭代公式为:

其中一阶导函数和hessian矩阵表达式如下:

当然了,在编程的时候为了避免使用for循环,而应该直接使用这些公式的矢量表达式(具体的见程序内容)。
一些matlab函数:
find:
是找到的一个向量,其结果是find函数括号值为真时的值的下标编号。
inline:
构造一个内嵌的函数,很类似于我们在草稿纸上写的数学推导公式一样。参数一般用单引号弄起来,里面就是函数的表达式,如果有多个参数,则后面用单引号隔开一一说明。比如:g = inline('sin(alpha*x)','x','alpha'),则该二元函数是g(x,alpha) = sin(alpha*x)。
实验结果:
训练样本的分布图以及所学习到的分类界面曲线:

损失函数值和迭代次数之间的曲线:

最终输出的结果:

可以看出当一个小孩的第一门功课为20分,第二门功课为80分时,这个小孩不允许上大学的概率为0.6680,因此如果作为二分类的话,就说明该小孩不会被允许上大学。
实验代码(原网页提供):
% Exercise 4 -- Logistic Regression
clear all; close all; clc
x = load('ex4x.dat');
y = load('ex4y.dat');
[m, n] = size(x);
% Add intercept term to x
x = [ones(m, 1), x];
% Plot the training data
% Use different markers for positives and negatives
figure
pos = find(y); neg = find(y == 0);%find是找到的一个向量,其结果是find函数括号值为真时的值的编号
plot(x(pos, 2), x(pos,3), '+')
hold on
plot(x(neg, 2), x(neg, 3), 'o')
hold on
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Initialize fitting parameters
theta = zeros(n+1, 1);
% Define the sigmoid function
g = inline('1.0 ./ (1.0 + exp(-z))');
% Newton's method
MAX_ITR = 7;
J = zeros(MAX_ITR, 1);
for i = 1:MAX_ITR
% Calculate the hypothesis function
z = x * theta;
h = g(z);%转换成logistic函数
% Calculate gradient and hessian.
% The formulas below are equivalent to the summation formulas
% given in the lecture videos.
grad = (1/m).*x' * (h-y);%梯度的矢量表示法
H = (1/m).*x' * diag(h) * diag(1-h) * x;%hessian矩阵的矢量表示法
% Calculate J (for testing convergence)
J(i) =(1/m)*sum(-y.*log(h) - (1-y).*log(1-h));%损失函数的矢量表示法
theta = theta - H\grad;%是这样子的吗?
end
% Display theta
theta
% Calculate the probability that a student with
% Score 20 on exam 1 and score 80 on exam 2
% will not be admitted
prob = 1 - g([1, 20, 80]*theta)
%画出分界面
% Plot Newton's method result
% Only need 2 points to define a line, so choose two endpoints
plot_x = [min(x(:,2))-2, max(x(:,2))+2];
% Calculate the decision boundary line,plot_y的计算公式见博客下面的评论。
plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1));
plot(plot_x, plot_y)
legend('Admitted', 'Not admitted', 'Decision Boundary')
hold off
% Plot J
figure
plot(0:MAX_ITR-1, J, 'o--', 'MarkerFaceColor', 'r', 'MarkerSize', 8)
xlabel('Iteration'); ylabel('J')
% Display J
J
参考资料:
作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。
转载 Deep learning:四(logistic regression练习)的更多相关文章
- 转载 Deep learning:三(Multivariance Linear Regression练习)
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage. ...
- 转载 Deep learning:六(regularized logistic回归练习)
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...
- [转载]Deep Learning(深度学习)学习笔记整理
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...
- 转载 deep learning:八(SparseCoding稀疏编码)
转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因 ...
- machine learning 之 logistic regression
整理自Adrew Ng 的 machine learning课程week3 目录: 二分类问题 模型表示 decision boundary 损失函数 多分类问题 过拟合问题和正则化 什么是过拟合 如 ...
- CheeseZH: Stanford University: Machine Learning Ex2:Logistic Regression
1. Sigmoid Function In Logisttic Regression, the hypothesis is defined as: where function g is the s ...
- (四)Logistic Regression
1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y ...
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- 转载 Deep learning:一(基础知识_1)
前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下m ...
随机推荐
- Django中的Form表单
Django中已经定义好了form类,可以很容易的使用Django生成一个表单. 一.利用Django生成一个表单: 1.在应用下创建一个forms文件,用于存放form表单.然后在forms中实例华 ...
- JVM基础(3)-多态性实现机制
一.方法解析 Class 文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在 Class 文件里面存储的都只是符号引用,而不是方法在实际运行时内存布局中的入口地址. 因此,想要使用这些符号引用 ...
- nefu 903 字符串去星
字符串去星 Problem : 903 Time Limit : 1000ms Memory Limit : 65536K description 有一个字符串(长度小于100),要统计其中有多少个* ...
- append()常见错误
实例1 empty = [] print empty.append("Hi") 输出None print empty 输出["Hi"] 错误: 直接打印变量带a ...
- redis数据类型:sorted sets类型及操作
sorted sets类型及操作: sorted set是set的一个升级版本,它是在set的基础上增加了一个顺序 属性,这一属性在添加修改元素的时候可以指定,每次指定后,zset会 自动重新按新的值 ...
- robotium和appium的一些区别
Appium是基于UIAutomator框架实现的.Appium测试进程与目标应用进程是分开的,所以Appium不能直接访问目标应用的各种element属性进行copy&paste,而只能模拟 ...
- QML与Qt C++ 交互机制探讨与总结
介绍 QML和 C++对象可以通过,signals,slots和 属性修改进行交互.对于一个C++对象,任何数据都可以通过Qt的 Meta-Object System暴露给QML(何总方法,后面介绍) ...
- 元素NULL判断
元素取值val() val()方法主要用来获取form元素的值像input select textarea.在对select取值的时候当没有option被选定时val()会返回null,至少一个opt ...
- js iframe跨域访问
1.什么是跨域? 2.前台解决跨域几种方法 2.1 动态创建script 2.2 使用document.domain 2.3使用HTML5新属性postMessage 2.4 利用iframe和loc ...
- 《JavaScript高级程序设计》读书笔记 ---语句
do-while语句do-while 语句是一种后测试循环语句,即只有在循环体中的代码执行之后,才会测试出口条件.换句话说,在对条件表达式求值之前,循环体内的代码至少会被执行一次.以下是do-whil ...