R语言:recommenderlab包的总结与应用案例
R语言:recommenderlab包的总结与应用案例
recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算法的框架。
它提供了几种基础算法,并可利用注册机制允许用户使用自己的算法
recommender包的数据类型采用S4类构造。
(1)评分矩阵数据接口:使用抽象的raringMatrix为评分数据提供接口。raringMatrix采用了很多类似矩阵对象的操作,如 dim(),dimnames() ,rowCounts() ,colMeans() ,rowMeans(),colSums(),rowMeans();也增加了一些特别的操作方法,如sample(),用于从用户(即,行)中抽样,image()可以生成像素图。raringMatrix的两种具体运用是realRatingMatrix和binaryRatingMatrix,分别对应评分矩阵的不同情况。其中realRatingMatrix使用的是真实值的评分矩阵,存储在由Matrix包定义的稀疏矩阵(spare matrix)格式中;binaryRatingMatrix使用的是0-1评分矩阵,存储在由arule包定义的itemMatrix中。
(2)存储推荐模型并基于模型进行推荐。类Recommender使用数据结构来存储推荐模型。创建方法是:Rencommender(data=ratingMatrix,method,parameter=NULL),返回一个Rencommender对象object,可以用来做top-N推荐的预测:
predict(object,newdata,n,type=c('topNlist,ratings'),…)
(3)使用者可以利用registry包提供的注册机制自定义自己的推荐算法。注册机制调用recommenderRegistry并存贮推荐算法的名字和简短描述。
(4)评价推荐算法的表现:recommender包提供了evaluationScheme类的对象用于创建并保存评价计划。创建函数如下: evaluatiomScheme(data,method,train,k,given) 这里的方法可以采用简单划分、自助法抽样、k-折交叉验证等。接下来可以使用函数evalute()使用评价计划的多个评价算法的表现。
2.实例分析
library(recommenderlab)
library(ggplot2)
##数据处理与数据探索性分析
data(MovieLense)
image(MovieLense)
# 获取评分
ratings.movie <- data.frame(ratings = getRatings(MovieLense))
summary(ratings.movie$ratings)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.00 4.00 3.53 4.00 5.00
ggplot(ratings.movie, aes(x = ratings)) + geom_histogram(fill = "beige", color = "black",
binwidth = 1, alpha = 0.7) + xlab("rating") + ylab("count")
# 标准化
ratings.movie1 <- data.frame(ratings = getRatings(normalize(MovieLense, method = "Z-score")))
summary(ratings.movie1$ratings)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.850 -0.647 0.108 0.000 0.751 4.130
ggplot(ratings.movie1, aes(x = ratings)) + geom_histogram(fill = "beige", color = "black",
alpha = 0.7) + xlab("rating") + ylab("count")
# 用户的电影点评数
movie.count <- data.frame(count = rowCounts(MovieLense))
ggplot(movie.count, aes(x = count)) + geom_histogram(fill = "beige", color = "black",
alpha = 0.7) + xlab("counts of users") + ylab("counts of movies rated")
rating.mean <- data.frame(rating = colMeans(MovieLense))
ggplot(rating.mean, aes(x = rating)) + geom_histogram(fill = "beige", color = "black",
alpha = 0.7) + xlab("rating") + ylab("counts of movies ")
##推荐算法的情况
# 先看可以使用的方法
recommenderRegistry$get_entries(dataType = "realRatingMatrix")
#对于realRatingMatrix有六种方法:IBCF(基于物品的推荐)、UBCF(基于用户的推荐)、SVD(矩阵因子化)、PCA(主成分分析)、 RANDOM(随机推荐)、POPULAR(基于流行度的推荐)
#利用前940位用户建立推荐模型
m.recomm <- Recommender(MovieLense[1:940], method = "IBCF")
m.recomm
#对后三位用户进行推荐预测,使用predict()函数,默认是topN推荐,这里取n=3。预测后得到的一个topNList对象,可以把它转化为列表,看预测结果。
(ml.predict <- predict(m.recomm, MovieLense[941:943], n = 3))
str(ml.predict)
as(ml.predict, "list")#预测结果
#代码示例
library(recommenderlab)
data(MovieLense)
scheme <- evaluationScheme(MovieLense, method = "split", train = 0.9, k = 1,
given = 10, goodRating = 4)
algorithms <- list(popular = list(name = "POPULAR", param = list(normalize = "Z-score")),
ubcf = list(name = "UBCF", param = list(normalize = "Z-score", method = "Cosine",
nn = 25, minRating = 3)), ibcf = list(name = "IBCF", param = list(normalize = "Z-score")))
results <- evaluate(scheme, algorithms, n = c(1, 3, 5, 10, 15, 20))
plot(results, annotate = 1:3, legend = "topleft") #ROC
plot(results, "prec/rec", annotate = 3)#precision-recall
# 按照评价方案建立推荐模型
model.popular <- Recommender(getData(scheme, "train"), method = "POPULAR")
model.ibcf <- Recommender(getData(scheme, "train"), method = "IBCF")
model.ubcf <- Recommender(getData(scheme, "train"), method = "UBCF")
# 对推荐模型进行预测
predict.popular <- predict(model.popular, getData(scheme, "known"), type = "ratings")
predict.ibcf <- predict(model.ibcf, getData(scheme, "known"), type = "ratings")
predict.ubcf <- predict(model.ubcf, getData(scheme, "known"), type = "ratings")
# 做误差的计算
predict.err <- rbind(calcPredictionError(predict.popular, getData(scheme, "unknown")),
calcPredictionError(predict.ubcf, getData(scheme, "unknown")), calcPredictionError(predict.ibcf,
getData(scheme, "unknown")))
rownames(predict.err) <- c("POPULAR, "UBCF", "IBCF")
predict.err
#calcPredictionError()的参数“know”和“unknow”表示对测试集的进一步划分:“know”表示用户已经评分的,要用来预测的items;“unknow”表示用户已经评分,要被预测以便于进行模型评价的items。
R语言:recommenderlab包的总结与应用案例的更多相关文章
- R语言 recommenderlab 包
recommend li_volleyball 2016年3月20日 library(recommenderlab) ## Warning: package 'recommenderlab' was ...
- R语言-神经网络包RSNNS
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...
- R语言-Knitr包的详细使用说明
R语言-Knitr包的详细使用说明 by 扬眉剑 来自数盟[总舵] 群:321311420 1.相关资料 1:自动化报告-谢益辉 https://github.com/yihui/r-ninja/bl ...
- R语言dplyr包初探
昨天学了一下R语言dplyr包,处理数据框还是很好用的.记录一下免得我忘记了... 先写一篇入门的,以后有空再写一篇详细的用法. #dplyr learning library(dplyr) #fil ...
- R语言 ggplot2包
R语言 ggplot2包的学习 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将 ...
- R语言扩展包dplyr——数据清洗和整理
R语言扩展包dplyr——数据清洗和整理 标签: 数据R语言数据清洗数据整理 2015-01-22 18:04 7357人阅读 评论(0) 收藏 举报 分类: R Programming(11) ...
- 安装R语言的包的方法
安装R语言的包的方法: 1. 在线安装 在R的控制台,输入类似install.packages("TSA") # 安装 TSA install.packages("TS ...
- Bagging(R语言实现)—包外错误率,多样性测度
1. Bagging Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次 ...
- R语言扩展包dplyr笔记
引言 2014年刚到, 就在 Feedly 订阅里看到 RStudio Blog 介绍 dplyr 包已发布 (Introducing dplyr), 此包将原本 plyr 包中的 ddply() 等 ...
随机推荐
- Linux服务部署--Java(一)
网络配置 一.配置dns 1.修改/etc/NetworkManager/NetworkManager.conf 文件,在main部分添加 “dns=none” 选项: 2.NetworkManage ...
- Scrapy基础(十三)————ItemLoader的简单使用
ItemLoader的简单使用:目的是解决在爬虫文件中代码结构杂乱,无序,可读性差的缺点 经过之前的基础,我们可以爬取一些不用登录,没有Ajax的,等等其他的简单的爬虫回顾我们的代码,是不是有点冗长, ...
- Python一行代码处理地理围栏
最近在工作中遇到了这个一个需求,用户设定地理围栏,后台获取到实时位置信息后通过与围栏比较,判断是否越界等. 这个过程需要用到数据协议为GEOjson,通过查阅资料后,发现python的shapely库 ...
- PHP中让json_encode不自动转义斜杠“/”的方法
最近将使用爬虫爬取的链接保存到 mysql 数据库中时,发现我将链接使用 json_encode 保存时候,在数据库中却显示了转义字符,我并不需要这转义的,看起来不清晰而且占用存储空间. 后来发现在默 ...
- [HNOI2010]平面图判定
Description: 若能将无向图 \(G=(V, E)\) 画在平面上使得任意两条无重合顶点的边不相交,则称 \(G\) 是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你 ...
- UltraEdit使用(工具类似于notepad++)
打开多个文件,在多个文件中切换,鼠标点/ Ctrl+Tab自动换行的设置: 高级-->配置-->编辑器-->自动换行,制表符设置-->默认为每个文件启用自动换行 去掉自动备份设 ...
- HTML入门随笔
---恢复内容开始--- html网址:https://developer.mozilla.org/zh-CN/docs/Learn/HTML/Introduction_to_HTML/Getting ...
- JQ03
JQ03 1.val方法 val方法用于设置和获取表单元素的值,如input/textarea 1)设置与获取: .val("需要设置的字符串"): .val();//获取字符串 ...
- YUV420序列转成图片
首先声明一点,这里的YUV其实不是YUV,严格来说是YCbCr.这里就先这样称呼YUV吧.本文是关于YUV420格式的视频转成图片序列的. 关于YUV格式的图片,存储如下图所示: 举个例子,一个640 ...
- HRMS(人力资源管理系统)-从单机应用到SaaS应用-架构分析(功能性、非功能性、关键约束)-下篇
一.开篇 上一篇<HRMS(人力资源管理系统)-从单机应用到SaaS应用-架构分析(功能性.非功能性.关键约束)-上篇>我们详细分析了在架构分析过程中我们需要注意的内容,架构过程的方法论及 ...