R语言:recommenderlab包的总结与应用案例

 
1. 推荐系统:recommenderlab包整体思路

recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算法的框架。
它提供了几种基础算法,并可利用注册机制允许用户使用自己的算法
recommender包的数据类型采用S4类构造。

(1)评分矩阵数据接口:使用抽象的raringMatrix为评分数据提供接口。raringMatrix采用了很多类似矩阵对象的操作,如 dim(),dimnames() ,rowCounts() ,colMeans() ,rowMeans(),colSums(),rowMeans();也增加了一些特别的操作方法,如sample(),用于从用户(即,行)中抽样,image()可以生成像素图。raringMatrix的两种具体运用是realRatingMatrix和binaryRatingMatrix,分别对应评分矩阵的不同情况。其中realRatingMatrix使用的是真实值的评分矩阵,存储在由Matrix包定义的稀疏矩阵(spare matrix)格式中;binaryRatingMatrix使用的是0-1评分矩阵,存储在由arule包定义的itemMatrix中。

(2)存储推荐模型并基于模型进行推荐。类Recommender使用数据结构来存储推荐模型。创建方法是:Rencommender(data=ratingMatrix,method,parameter=NULL),返回一个Rencommender对象object,可以用来做top-N推荐的预测:
predict(object,newdata,n,type=c('topNlist,ratings'),…)

(3)使用者可以利用registry包提供的注册机制自定义自己的推荐算法。注册机制调用recommenderRegistry并存贮推荐算法的名字和简短描述。

(4)评价推荐算法的表现:recommender包提供了evaluationScheme类的对象用于创建并保存评价计划。创建函数如下: evaluatiomScheme(data,method,train,k,given) 这里的方法可以采用简单划分、自助法抽样、k-折交叉验证等。接下来可以使用函数evalute()使用评价计划的多个评价算法的表现。

2.实例分析

library(recommenderlab)
library(ggplot2)

##数据处理与数据探索性分析

data(MovieLense)
image(MovieLense)
# 获取评分
ratings.movie <- data.frame(ratings = getRatings(MovieLense))
summary(ratings.movie$ratings)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.00 4.00 3.53 4.00 5.00

ggplot(ratings.movie, aes(x = ratings)) + geom_histogram(fill = "beige", color = "black",
    binwidth = 1, alpha = 0.7) + xlab("rating") + ylab("count")

# 标准化
ratings.movie1 <- data.frame(ratings = getRatings(normalize(MovieLense, method = "Z-score")))
summary(ratings.movie1$ratings)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.850 -0.647 0.108 0.000 0.751 4.130
ggplot(ratings.movie1, aes(x = ratings)) + geom_histogram(fill = "beige", color = "black",
    alpha = 0.7) + xlab("rating") + ylab("count")

# 用户的电影点评数
movie.count <- data.frame(count = rowCounts(MovieLense))
ggplot(movie.count, aes(x = count)) + geom_histogram(fill = "beige", color = "black",
    alpha = 0.7) + xlab("counts of users") + ylab("counts of movies rated")

rating.mean <- data.frame(rating = colMeans(MovieLense))
ggplot(rating.mean, aes(x = rating)) + geom_histogram(fill = "beige", color = "black",
    alpha = 0.7) + xlab("rating") + ylab("counts of movies ")

##推荐算法的情况

# 先看可以使用的方法
recommenderRegistry$get_entries(dataType = "realRatingMatrix")
#对于realRatingMatrix有六种方法:IBCF(基于物品的推荐)、UBCF(基于用户的推荐)、SVD(矩阵因子化)、PCA(主成分分析)、 RANDOM(随机推荐)、POPULAR(基于流行度的推荐)
#利用前940位用户建立推荐模型

m.recomm <- Recommender(MovieLense[1:940], method = "IBCF")
m.recomm

#对后三位用户进行推荐预测,使用predict()函数,默认是topN推荐,这里取n=3。预测后得到的一个topNList对象,可以把它转化为列表,看预测结果。
(ml.predict <- predict(m.recomm, MovieLense[941:943], n = 3))
str(ml.predict)
as(ml.predict, "list")#预测结果

#代码示例

library(recommenderlab)
data(MovieLense)
scheme <- evaluationScheme(MovieLense, method = "split", train = 0.9, k = 1,
    given = 10, goodRating = 4)
algorithms <- list(popular = list(name = "POPULAR", param = list(normalize = "Z-score")),
    ubcf = list(name = "UBCF", param = list(normalize = "Z-score", method = "Cosine",
        nn = 25, minRating = 3)), ibcf = list(name = "IBCF", param = list(normalize = "Z-score")))
results <- evaluate(scheme, algorithms, n = c(1, 3, 5, 10, 15, 20))
plot(results, annotate = 1:3, legend = "topleft") #ROC
plot(results, "prec/rec", annotate = 3)#precision-recall

# 按照评价方案建立推荐模型
model.popular <- Recommender(getData(scheme, "train"), method = "POPULAR")
model.ibcf <- Recommender(getData(scheme, "train"), method = "IBCF")
model.ubcf <- Recommender(getData(scheme, "train"), method = "UBCF")
# 对推荐模型进行预测
predict.popular <- predict(model.popular, getData(scheme, "known"), type = "ratings")
predict.ibcf <- predict(model.ibcf, getData(scheme, "known"), type = "ratings")
predict.ubcf <- predict(model.ubcf, getData(scheme, "known"), type = "ratings")
# 做误差的计算
predict.err <- rbind(calcPredictionError(predict.popular, getData(scheme, "unknown")),
    calcPredictionError(predict.ubcf, getData(scheme, "unknown")), calcPredictionError(predict.ibcf,
        getData(scheme, "unknown")))
rownames(predict.err) <- c("POPULAR, "UBCF", "IBCF")
predict.err

#calcPredictionError()的参数“know”和“unknow”表示对测试集的进一步划分:“know”表示用户已经评分的,要用来预测的items;“unknow”表示用户已经评分,要被预测以便于进行模型评价的items。

R语言:recommenderlab包的总结与应用案例的更多相关文章

  1. R语言 recommenderlab 包

    recommend li_volleyball 2016年3月20日 library(recommenderlab) ## Warning: package 'recommenderlab' was ...

  2. R语言-神经网络包RSNNS

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  3. R语言-Knitr包的详细使用说明

    R语言-Knitr包的详细使用说明 by 扬眉剑 来自数盟[总舵] 群:321311420 1.相关资料 1:自动化报告-谢益辉 https://github.com/yihui/r-ninja/bl ...

  4. R语言dplyr包初探

    昨天学了一下R语言dplyr包,处理数据框还是很好用的.记录一下免得我忘记了... 先写一篇入门的,以后有空再写一篇详细的用法. #dplyr learning library(dplyr) #fil ...

  5. R语言 ggplot2包

    R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将 ...

  6. R语言扩展包dplyr——数据清洗和整理

    R语言扩展包dplyr——数据清洗和整理 标签: 数据R语言数据清洗数据整理 2015-01-22 18:04 7357人阅读 评论(0) 收藏 举报  分类: R Programming(11)  ...

  7. 安装R语言的包的方法

    安装R语言的包的方法: 1. 在线安装 在R的控制台,输入类似install.packages("TSA")  # 安装 TSA install.packages("TS ...

  8. Bagging(R语言实现)—包外错误率,多样性测度

    1.      Bagging Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次 ...

  9. R语言扩展包dplyr笔记

    引言 2014年刚到, 就在 Feedly 订阅里看到 RStudio Blog 介绍 dplyr 包已发布 (Introducing dplyr), 此包将原本 plyr 包中的 ddply() 等 ...

随机推荐

  1. Apache Atlas

    atlas英 [ˈætləs] 阿特拉斯. 美 [ˈætləs] n.地图集;〈比喻〉身负重担的人 == Apache Atlas Version: 1.1.0 Last Published: 201 ...

  2. Python3基础-高级用法

    写在前面:本文主要是python高级练习部分,介绍了一些高级用法,这些都是零散的小知识,这些可以与函数式编程合在一起使用. 函数式编程1:Python中提供的函数式编程主要有: map(函数,可迭代式 ...

  3. 潭州课堂25班:Ph201805201 django框架 第十二课 自定义中间件,上下文处理,admin后台 (课堂笔记)

    中间件 在项目主目录下的配置文件 在项目主目录下创建文件 写个自定义异常处理 方法1 要让其生效,要在主目录下,的中间件中进行注册 主目录下.该文件名.类名 在进入视图函数之前进行判断,  给 req ...

  4. [CF1038D]Slime

    [CF1038D]Slime 题目大意: 有\(n(n\le5\times10^5)\)只史莱姆,每只史莱姆有一个分数\(w_i(|w_i|le10^9)\),每次一只史莱姆可以吞掉左边的或者右边的史 ...

  5. NineveGL引擎学习笔记

  6. 3ds max学习笔记(十六)-- 摄像机

    摄像机添加以及应用技巧:可以更改观察的视点和空间广阔,模拟景深和运动模糊效果: 1,添加:更改观察的角度和位置,增加场景透视感: 基本操作: 景深:

  7. ajax请求json中的数据

    在这里不多说,直接可以运行代码看效果: 代码: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  8. vue的生命周期(又称钩子函数)----以及vue1.0版本与vue2.0版本生命周期的不同

    vue生命周期 1. vue1.0版本与vue2.0版本生命周期的不同 vue1.0版本生命周期图示 图1  vue1.0版本生命周期 vue1.0版本的生命周期: init 实例创建之前 creat ...

  9. python安装虚拟环境virtualenv

    虚拟环境 虚拟环境是一个将不同项目所需求的依赖分别放在独立的地方的一个工具,它给这些工程创建虚拟的Python环境.它解决了“项目X依赖于版本1.x,而项目Y需要项目4.x”的两难问题,而且使你的全局 ...

  10. pycharm实现sublime的显示效果,很惊艳哦

    收到https://github.com/simoncos/pycharm-monokai链接中的指引 下载箭头所指的文件,然后按照 PyCharm -> File -> Settings ...