LOJ116 有源汇有上下界最大流(上下界网络流)
考虑有源汇上下界可行流:由汇向源连inf边,那么变成无源汇图,按上题做法跑出可行流。此时该inf边的流量即为原图中该可行流的流量。因为可以假装把加上去的那些边的流量放回原图。
此时再从原来的源向原来的汇跑最大流。超源超汇相关的边已经流满不会再退流,则下界可以满足,并且在此基础上增广是可以保证原图的流量平衡的。求出的最大流即为原图最大流。因为显然原图最大流=可行流流量+原图新增流量,而可行流流量等于汇到源流量,这部分在跑最大流的时候被退流并计入答案。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 210
#define M 50000
#define S 0
#define T 201
#define inf 1000000000
int n,m,w,v,t=-,p[N],degree[N],l[M],tot=;
int cur[N],d[N],q[N],ans=;
struct data{int to,nxt,cap,flow;
}edge[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
bool bfs(int s,int t)
{
memset(d,,sizeof(d));d[s]=;
int head=,tail=;q[]=s;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[t];
}
int work(int k,int f,int t)
{
if (k==t) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow),t);
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic(int s,int t)
{
while (bfs(s,t))
{
memcpy(cur,p,sizeof(p));
ans+=work(s,inf,t);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj116.in","r",stdin);
freopen("loj116.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read(),w=read(),v=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read(),low=read(),high=read();
addedge(x,y,high-low);
degree[y]+=low,degree[x]-=low;
l[i]=low;
}
for (int i=;i<=n;i++)
if (degree[i]>) addedge(S,i,degree[i]),tot+=degree[i];
else if (degree[i]<) addedge(i,T,-degree[i]);
addedge(v,w,inf);
dinic(S,T);
if (ans<tot) cout<<"please go home to sleep";
else ans=,dinic(w,v),cout<<ans;
return ;
}
LOJ116 有源汇有上下界最大流(上下界网络流)的更多相关文章
- LOJ116 - 有源汇有上下界最大流
原题链接 Description 模板题啦~ Code //有源汇有上下界最大流 #include <cstdio> #include <cstring> #include & ...
- 【Loj116】有源汇有上下界最大流(网络流)
[Loj116]有源汇有上下界最大流(网络流) 题面 Loj 题解 模板题. #include<iostream> #include<cstdio> #include<c ...
- 【LOJ116】有源汇有上下界最大流(模板题)
点此看题面 大致题意: 给你每条边的流量上下界,让你先判断是否存在可行流.若存在,则输出最大流. 无源汇上下界可行流 在做此题之前,最好先去看看这道题目:[LOJ115]无源汇有上下界可行流. 大致思 ...
- Shoot the Bullet(ZOJ3229)(有源汇上下界最大流)
描述 ensokyo is a world which exists quietly beside ours, separated by a mystical border. It is a utop ...
- HDU3157 Crazy Circuits(有源汇流量有上下界网络的最小流)
题目大概给一个电路,电路上有n+2个结点,其中有两个分别是电源和负载,结点们由m个单向的部件相连,每个部件都有最少需要的电流,求使整个电路运转需要的最少电流. 容量网络的构建很容易,建好后就是一个有源 ...
- ZOJ3229 Shoot the Bullet(有源汇流量有上下界网络的最大流)
题目大概说在n天里给m个女孩拍照,每个女孩至少要拍Gi张照片,每一天最多拍Dk张相片且都有Ck个拍照目标,每一个目标拍照的张数要在[Lki, Rki]范围内,问最多能拍几张照片. 源点-天-女孩-汇点 ...
- vijos P1213 80人环游世界(有源汇的上下界费用流)
[题目链接] https://vijos.org/p/1213 [题意] m个人将n个点访问完,每个点能且只能访问v次,点点之间存在有权边,问最小费用. [思路] 有源汇的上下界最小费用最大流. 每个 ...
- poj2396 Budget(有源汇上下界可行流)
[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...
- HDU 3157 Crazy Circuits(有源汇上下界最小流)
HDU 3157 Crazy Circuits 题目链接 题意:一个电路板,上面有N个接线柱(标号1~N),还有两个电源接线柱 + -.给出一些线路,每一个线路有一个下限值求一个能够让全部部件正常工作 ...
随机推荐
- UVA11255 Necklace Burnside、组合
VJ传送门 因为有每种颜色个数的限制,所以不能使用Polya 考虑退一步,使用Burnside引理求解 回忆一下Burnside引理,它需要求的是置换群中每一个置换的不动点个数,也就是施加一次置换之后 ...
- libmysqlclient.so.16: cannot open shared object file: No such file or directory
编译安装的mysql5.6.39,安装目录是/usr/local/mysql,启用程序时报错:libmysqlclient.so.16: cannot open shared object file: ...
- Scrum Meeting 8
第八次会议 No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 No_11:照片记录 待更新 No_100:代码/文档签入记录 No_101:出席表 ...
- jeecg的下拉列表
jeecg里面下拉列表的使用 ①建立数据字典seo_id <t:dictSelect field="operationPromotionAccount" typeGroupC ...
- SE Springer小组之《Spring音乐播放器》需求分析说明书一
软件需求说明书 软件需求说明书的编制是为了使用户和软件开发者双方对该软件的初始规定有一个共同的理解, 使之成为整个开发工作的基础. 1 引言 1.1编写目的 使用户对该软件的初始规定有一个理解,也使软 ...
- 剑值offer:最小的k个数
这是在面试常遇到的topk问题. 题目描述: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 解题思路: 思路一:用快排对数 ...
- java 值传递 数组传递
在java中,不允许程序员选择值传递还是地址传递各个参数,基本类型总是按值传递.对于对象来说,是将对象的引用也就是副本传递给了方法,在方法中只有对对象进行修改才能影响该对象的值,操作对象的引用时是无法 ...
- <面向对象程序设计>课程作业一
Github链接 在看完这次的作业要求后我整个人是混乱的,因为作业要求把不同的函数放在一个main函数中:我们之前也是进行了函数分离,但是是放在了不同的文件中.如果要改的话相当于重写(而且这两种形式其 ...
- python 中一些常用的内置函数
一.常用内置函数 abs(x) 返回绝对值,参数为int float,非字符只能num all(iterable) 如果迭代对象里面的所有值都为真就返回True.all([1, 2, -7]) --- ...
- Docker attach
Description Attach local standard input, output, and error streams to a running container Usage dock ...