题目描述

我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。
    给定N和S,计算不大于N的幸运数个数。

输入

输入的第一行包含整数N。
    接下来一行一个整数M,表示S中元素的数量。
    接下来M行,每行一个数字串,表示S中的一个元素。

输出

输出一行一个整数,表示答案模109+7的值。

样例输入

20
3
2
3
14

样例输出

14

提示

下表中l表示N的长度,L表示S中所有串长度之和。

1 < =l < =1200 , 1 < =M < =100 ,1 < =L < =1500

这道题和bzoj1030比较像,建议先做一下那道题。虽然是一道AC自动机的题但重点是dp,因为不只有位数限制,每一位还有限制数值,所以不能只用f[i][j]表示第i位走到了j节点。因为有限制值所以我们不妨在前面再加一维变成f[k][i][j](k=0或k=1),f[0][i][j]表示第i为走到j节点需要受限制(即前几位都等于每一位限制值),f1[1][i][j]则表示第i位走到j节点不受限制(即前几位有至少一位低于限制值)。当枚举f[0][i][j]时如果j节点所代表的数字小于第i位的限制值,那就可以转移到f[1][i+1][x](x为j的子节点).对于f[0][i][j],因为这一位受限制,所以下一位也要相应受限制,即f[0][i][j]转移到f[0][i+1][x].对于f[1][i][j],因为这一位不受限制,下一位一定不受限制,所以从f[1][i][j]转移到f[1][i+1][x]。

最后附上代码。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
struct tree
{
int fail;
int vis[11];
int end;
}a[1600];
char s[1600];
char t[1250];
int cnt;
int n;
int m;
long long ans;
long long f[3][1250][1600];
int mod=1e9+7;
void build(char *s)
{
int l=strlen(s);
int now=0;
for(int i=0;i<l;i++)
{
int x=s[i]-'0';
if(!a[now].vis[x])
{
a[now].vis[x]=++cnt;
}
now=a[now].vis[x];
}
a[now].end++;
}
void getfail()
{
queue<int>q;
for(int i=0;i<10;i++)
{
if(a[0].vis[i]!=0)
{
a[a[0].vis[i]].fail=0;
q.push(a[0].vis[i]);
}
}
while(!q.empty())
{
int now=q.front();
q.pop();
for(int i=0;i<10;i++)
{
if(!a[now].vis[i])
{
a[now].vis[i]=a[a[now].fail].vis[i];
continue;
}
a[a[now].vis[i]].fail=a[a[now].fail].vis[i];
a[a[now].vis[i]].end|=a[a[a[now].fail].vis[i]].end;
q.push(a[now].vis[i]);
}
}
}
int main()
{
scanf("%s",t+1);
m=strlen(t+1);
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",s);
build(s);
}
getfail();
for(int i=0;i<m;i++)
{
for(int j=0;j<=cnt;j++)
{
if(!j)
{
if(!i)
{
int x=t[i+1]-'0';
for(int k=1;k<x;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=1;
f[1][i+1][a[j].vis[k]]%=mod;
}
}
if(!a[a[j].vis[x]].end)
{
f[0][i+1][a[j].vis[x]]+=1;
f[0][i+1][a[j].vis[x]]%=mod;
}
}
else
{
for(int k=1;k<=9;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=1;
f[1][i+1][a[j].vis[k]]%=mod;
}
}
}
}
if(f[0][i][j])
{
int x=t[i+1]-'0';
for(int k=0;k<x;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=f[0][i][j];
f[1][i+1][a[j].vis[k]]%=mod;
}
}
if(!a[a[j].vis[x]].end)
{
f[0][i+1][a[j].vis[x]]+=f[0][i][j];
f[0][i+1][a[j].vis[x]]%=mod;
}
}
if(f[1][i][j])
{
for(int k=0;k<=9;k++)
{
if(!a[a[j].vis[k]].end)
{
f[1][i+1][a[j].vis[k]]+=f[1][i][j];
f[1][i+1][a[j].vis[k]]%=mod;
}
}
}
}
}
for(int i=0;i<=cnt;i++)
{
ans+=f[0][m][i];
ans%=mod;
ans+=f[1][m][i];
ans%=mod;
}
printf("%lld",ans);
}

BZOJ3530[Sdoi2014]数数——AC自动机+数位DP的更多相关文章

  1. 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 682  Solved: 364 Description 我们称一 ...

  2. 【JZOJ3624】【SDOI2014】数数(count) AC自动机+数位dp

    题面 100 容易想到使用AC自动机来处理禁忌子串的问题: 然后在自动机上数位dp,具体是: \(f_{i,j,0/1}\)表示填了\(i\)位,当前在自动机的第\(j\)个结点上,\(0\)表示当前 ...

  3. 【bzoj3530】[Sdoi2014]数数 AC自动机+数位dp

    题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...

  4. BZOJ 3530 [SDOI2014]数数 (Trie图/AC自动机+数位DP)

    题目大意:略 裸的AC自动机+数位DP吧... 定义f[i][x][0/1]表示已经匹配到了第i位,当前位置是x,0表示没到上限,1到上限,此时数是数量 然而会出现虚拟前导零,即前几位没有数字的情况, ...

  5. BZOJ3530:[SDOI2014]数数(AC自动机,数位DP)

    Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...

  6. BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]

    3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...

  7. [SDOI2014]数数 --- AC自动机 + 数位DP

    [SDOI2014]数数 题目描述: 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串. 例如当S=(22,333,0233)时,233是幸运数,2333 ...

  8. P3311 [SDOI2014]数数 AC自动机+数位DP

    题意 给定一个正整数N和n个模式串,问不大于N的数字中有多少个不包含任意模式串,输出对\(1e^9+7\)取模后的答案. 解题思路 把所有模式串都加入AC自动机,然后跑数位DP就好了.需要注意的是,这 ...

  9. HDU-4518 吉哥系列故事——最终数 AC自动机+数位DP

    题意:如果一个数中的某一段是长度大于2的菲波那契数,那么这个数就被定义为F数,前几个F数是13,21,34,55......将这些数字进行编号,a1 = 13, a2 = 21.现给定一个数n,输出和 ...

随机推荐

  1. eclipse中使用svn提交,更新代码。

    在新公司工作,版本管理工具变成了svn,之前一直用git作为版本管理,用的编辑IDE是IntelliJIDEA,在这个编辑器下工作,还是很方便的,但是现在使用eclipse和svn.有点不习惯,但还是 ...

  2. BZOJ4237 JOISC2014 稻草人 CDQ分治、单调栈

    传送门 题意:给出平面上$N$个点,求满足以下两个条件的矩形:①左下角与右上角各有一个点:②矩形内部没有点.$N \leq 2 \times 10^5$,所有数字大于等于$0$,保证坐标两两不同 最开 ...

  3. WebApi 异步请求(HttpClient)

    还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 废话不多说,直接进入正题: 今天公司总部要求各个分公司把短信接口对接上,所谓的 ...

  4. 安卓自动化测试案例(跑在MonkeyRunner上)

    首先文件所在目录: MonkeyRunner所在目录: 运行命令(通过cd 命令  进入Tools目录下): 运行脚本:monkeyrunner.bat ..\honeywell\jsq.py 源文件 ...

  5. 【SCOI2015】小凸想跑步

    题面 题解 推波柿子: 设点\(A(x_a, y_a), B(x_b, y_b), C(x_c, y_c), D(x_d, y_d), P(x, y)\) \(\vec{a} = (x_b - x_a ...

  6. Spring Boot 2.0(七):Spring Boot 如何解决项目启动时初始化资源

    在我们实际工作中,总会遇到这样需求,在项目启动的时候需要做一些初始化的操作,比如初始化线程池,提前加载好加密证书等.今天就给大家介绍一个 Spring Boot 神器,专门帮助大家解决项目启动初始化资 ...

  7. 【Java并发.1】简介

    继上一本<深入理解Java虚拟机>之后,学习计划里的另一本书<Java并发编程实战>现在开始学习,并记录学习笔记. 第一章主要内容是介绍 并发 的简介.发展.特点. 编写正确的 ...

  8. 谈谈css伪类与伪元素

    前端er们大都或多或少地接触过CSS伪类和伪元素,比如最常见的:focus.:hover以及<a>标签的:link.:visited等,伪元素较常见的比如:before.:after等. ...

  9. Linux下针对服务器网卡流量和磁盘的监控脚本

    1)实时监控网卡流量的通用脚本: [root@ceph-node1 ~]# cat /root/net_monit.sh #!/bin/bash PATH=/bin:/usr/bin:/sbin:/u ...

  10. David Silver强化学习Lecture1:强化学习简介

    课件:Lecture 1: Introduction to Reinforcement Learning 视频:David Silver深度强化学习第1课 - 简介 (中文字幕) 强化学习的特征 作为 ...