推出来式子然后斜率优化水过去就完事了

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#define inf 0x3f3f3f3f
#define LL long long int
using namespace std;
const int maxn=; inline LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
LL co[maxn],sm[maxn],f[maxn],L;
int q[maxn],h,t; inline LL pw2(LL x){return x*x;} inline bool judge1(int j1,int j2,int i){
return f[j1]+pw2(j1+sm[j1])-f[j2]-pw2(j2+sm[j2])<(*i+*sm[i]-*L-)*(j1+sm[j1]-j2-sm[j2]);
}
inline bool judge2(int j1,int j2,int j3){
return (f[j1]+pw2(j1+sm[j1])-f[j2]-pw2(j2+sm[j2]))*(j2+sm[j2]-j3-sm[j3])<
(f[j2]+pw2(j2+sm[j2])-f[j3]-pw2(j3+sm[j3]))*(j1+sm[j1]-j2-sm[j2]);
} int main(){
int i,j,k;
N=rd();L=rd();
for(i=;i<=N;i++)co[i]=rd(),sm[i]=sm[i-]+co[i];
h=t=;q[]=;
for(i=;i<=N;i++){
while(h<t&&!judge1(q[h],q[h+],i)) h++;
f[i]=f[q[h]]+pw2(i-q[h]-+sm[i]-sm[q[h]]-L);
while(h<t&&!judge2(q[t-],q[t],i)) t--;
q[++t]=i;
}printf("%lld\n",f[N]); return ;
}

luogu3195/bzoj1010 玩具装箱(斜率优化dp)的更多相关文章

  1. BZOJ1010玩具装箱 - 斜率优化dp

    传送门 题目分析: 设\(f[i]\)表示装前i个玩具的花费. 列出转移方程:\[f[i] = max\{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2 ...

  2. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  3. BZOJ 1010 玩具装箱(斜率优化DP)

    dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j] ...

  4. HNOI2008玩具装箱 斜率优化

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  5. BZOJ 1010 HNOI2008 玩具装箱 斜率优化

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...

  6. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  7. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  8. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  9. 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告

    题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...

随机推荐

  1. [Oracle]如何在Oracle中设置Event

    为了调查Oracle 的故障,可以通过设置event ,来了解详细的状况.方法如下: ■ 如果使用 SPFILE, =============To enable it: 1. Check the cu ...

  2. Scala学习(四)---映射和元组

    映射和元组 摘要: 一个经典的程序员名言是:"如果只能有一种数据结构,那就用哈希表吧".哈希表或者更笼统地说映射,是最灵活多变的数据结构之一.映射是键/值对偶的集合.Scala有一个通用的叫法:元组, ...

  3. 分布式全文搜索引擎ElasticSearch

    一 什么是 ElasticSearch Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elas ...

  4. R实战 第十一篇:处理缺失值

    在真实的世界中,缺失数据是经常出现的,并可能对分析的结果造成影响.在R中,经常使用VIM(Visualization and Imputation of Missing values)包来对缺失值进行 ...

  5. 软工个人博客作业Week 1

    问题1:在瀑布模型中提到模型,模型(模拟版本)和原型有什么不同,如果与原型有同样的功能,那为什么称之为模型?如果没有同样的功能,又是怎么测试那些程序的? 问题2:怎样才能高效率的广泛而深入地了解用户的 ...

  6. 使用代理创建连接池 proxyPool

    配置文件properties url=jdbc:mysql://127.0.0.1:3306/mine?characterEncoding=UTF-8 user=root password=1234 ...

  7. ABP编译必须添加对程序集“netstandard, Version=2.0.0.0错误

    当前使用ABP版本为:4.6.0 升级vs2017到15.4版本,升级framework到4.7版本 如果Core版本请升级到net core 2

  8. Mind Manager X 10 registry backup key under windows XP

    Windows Registry Editor Version 5.00 [HKEY_CURRENT_USER\Software\Mindjet\MindManager\10] [HKEY_CURRE ...

  9. Linux 忘记root密码

    1 将系统重启,读秒的时候按下任意键就会出现如下图菜单界面 2 进入上图菜单界面之后,按e键就可以进入grub的编辑模式 3 选择第二行 kernel开头,再按 e 键进入该行的编辑界面中,然后在出现 ...

  10. [转帖]服务器操作系统应该选择 Debian/Ubuntu 还是 CentOS?

    来源:https://www.zhihu.com/question/19599986 作者: https://www.zhihu.com/people/yuan-hao-yang/answers IT ...