题目传送门

Desctiption

见题面。

Solution

人类智慧。。。

考虑这样一个赌博游戏,现在有一个猴子,它随机从 \(1\sim n\) 中选一个打出来。现在有若干个赌徒,他们一开始都有 \(\$1\),现在有一个字符串 \(S\),赌徒在第一次押猴子会打 \(S_1\),如果赢了就回收 \(\$ n\) ,如果输了就可以滚他的蛋了。如果赌徒赢了就继续押猴子会打 \(S_2\),如果赢了就回收 \(\$ n^2\) ,否则就可以滚蛋了。以此类推,并且猴子每打一个字都会新加进来一个赌徒。当某一个赌徒不用滚蛋的时候赌场就可以滚蛋了。

我们观察后可以发现这个赌博是一个公平博弈,因为一个赌徒最后的期望财产为 \(1\),所以赌徒和赌场从期望上来讲都是不赚不亏的。接着我们考虑结束前发生了什么。

我们假设 \(S=\{1,4,1,5,1,1,4,1\}\),\(n=5\),那么最后一个赌徒得了 \(\$5\),倒数第三个赌徒得了 \(\$5^3\) ,倒数第八个赌徒得了 \(\$5^8\),其余赌徒都滚蛋了。

又因为这个博弈是公平的,也就是说从期望角度,赌场需要来 \(5^1+5^3+5^8\) 个人才可以。我们另外可以看出,赌徒得的总钱数(即这个题中唱歌期望时间)就是:

\[\sum_{T\in \text{Border S}} n^{|T|}
\]

求 \(\text{Border}\) 可以直接 KMP。

时间复杂度 \(\Theta(n)\)。

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 100005
#define mod 10000 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,m,t,s[MAXN],f[MAXN],fail[MAXN]; int mul (int a,int b){return a * b % mod;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
return res;
} void Work (int now){
read (m);
for (Int i = 1;i <= m;++ i) read (s[i]);
for (Int i = 2,t = 0;i <= m;++ i){
while (t && s[t + 1] != s[i]) t = fail[t];
if (s[t + 1] == s[i]) ++ t;
fail[i] = t;
}
for (Int i = m;i;i = fail[i]) f[i] = now;
int ans = 0;for (Int i = 1,tmp = n % mod;i <= m;++ i,tmp = mul (tmp,n)) if (f[i] == now) ans = add (ans,tmp);
printf ("%04d\n",ans);
} signed main(){
read (n,t);
while (t --> 0) Work (t + 1);
return 0;
}

题解 [CTSC2006]歌唱王国的更多相关文章

  1. [CTSC2006]歌唱王国

    [CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...

  2. bzoi1152 [CTSC2006]歌唱王国Singleland

    [CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...

  3. 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差

    [题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...

  4. 【BZOJ】1152: [CTSC2006]歌唱王国Singleland

    题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...

  5. 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)

    题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...

  6. Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希

    传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...

  7. luogu P4548 [CTSC2006]歌唱王国

    传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...

  8. 洛谷 P4548 - [CTSC2006]歌唱王国(概率生成函数)

    洛谷题面传送门 PGF 入门好题. 首先介绍一下 PGF 的基本概念.对于随机变量 \(X\),满足 \(X\) 的取值总是非负整数,我们即 \(P(v)\) 表示 \(X=v\) 的概率,那么我们定 ...

  9. 【BZOJ1152】歌唱王国(生成函数,KMP)

    [BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...

随机推荐

  1. Python实现GPU加速的基本操作

    技术背景 之前写过一篇讲述如何使用pycuda来在Python上写CUDA程序的博客.这个方案的特点在于完全遵循了CUDA程序的写法,只是支持了一些常用函数的接口,如果你需要自己写CUDA算子,那么就 ...

  2. Java 学习:对象和类

    对象和类 从认识的角度考虑是先有对象后有类.对象,是具体的事物.类,是抽象的,是对对象的抽象. 从代码运行角度考虑是先有类后又对象.类是对象的模板. 对象:对象是类的一个实例,有状态和行为. 类:类是 ...

  3. Docker之Alpine制作jre镜像(瘦身)+自定义镜像上传阿里云

    alpine制作jdk镜像 alpine Linux简介 1.Alpine Linux是一个轻型Linux发行版,它不同于通常的Linux发行版,Alpine采用了musl libc 和 BusyBo ...

  4. Ordering the Soldiers 题解

    CodeChef:ORDERS 简化题意: \(n\) 个人排队,给定每个人需要向左移动几个,求最终排列. 即还原逆序对. 错误想法 既然知道每个人向左移动 \(a_i\) 个,那就相当于让他的排名 ...

  5. 使用Vue制作了一个计算机网络中子网划分部分的简陋计算工具

    前端新手请多关照~~~~ 上个学期学校开了计算机网络的课, 上到子网划分部分时, 各种计算虽然不然但是足够让人眼花缭乱 于是就想着自己写一个子网划分的小工具来辅助一下, 在一些简单的题目测试后没什么问 ...

  6. 创建一个People类型,有年龄、工资、性别三个属性。 定义一个方法叫做找对象,找对象方法传过来一个人;

    创建一个People类型,有年龄.工资.性别三个属性. 定义一个方法叫做找对象,找对象方法传过来一个人: 首先如果性别相同,就输出"我不是同性恋", 如果对方是男的,年龄小于28, ...

  7. Devexpress 饼状图

    <dxc:ChartControl Name="chart"                                BorderThickness="0&q ...

  8. Django边学边记—视图

    一. url (一)配置 在项目/settings.py中通过ROOT_URLCONF指定url配置 ROOT_URLCONF = 'XXXX.urls' 打开 项目/urls.py 配置 (二)语法 ...

  9. Postman 如何调试加密接口?

    大家好,我是安果! 众所周知,Postman 是一款非常流行且易用的 API 调试工具,在接口调试或测试时经常被使用针对普通 API 接口,我们可以直接在 Postman 中输入 URL.Query ...

  10. genymotion启动模拟器后,sdk查询adb devices为空-解决方案

    我们在genymotion中安装了一个安卓模拟器,比如Google Nexus 4,启动该模拟器后,在cmd中输入adb devices,发现为空. 解决方案:在genymotion选择Setting ...