[atARC126F]Affine Sort
记$g(k)$为$c$恰为$k$的合法三元组数,显然$f(k)=\sum_{i=1}^{k}g(i)$
结论:若$\lim_{k\rightarrow \infty}\frac{g(k)}{k^{2}}$存在,记其为$s$,则$\lim_{k\rightarrow \infty}\frac{f(k)}{k^{3}}=\frac{1}{3}s$
任取正实数$\epsilon$,根据极限的定义$\exists k_{0}\ge 1$,满足$\forall k\ge k_{0},s-\epsilon\le \frac{g(k)}{k^{2}}\le s+\epsilon$
对其求和并简单变形,不难得到$s-\epsilon\le \frac{\sum_{i=k_{0}}^{k}g(i)}{\sum_{i=k_{0}}^{k}i^2}\le s+\epsilon$
当$k\rightarrow\infty$时,显然中间的式子可以看作$\frac{f(k)}{\frac{1}{3}k^{3}}$,即得证
由此,不妨考虑如何求出$s$,进行如下构造:
定义$[x]$为$x$的小数部分,即$[x]=x-\lfloor x\rfloor$(这里$\lfloor x\rfloor$为小于等于$x$的最大整数)
注意到$x\ mod\ c<y\ mod\ c$当且仅当$[\frac{x}{c}]<[\frac{y}{c}]$,将其代入条件,也即$(aX_{i}+b)mod\ c$严格单调递增当且仅当$[\alpha X_{1}+\beta]<[\alpha X_{2}+\beta]<...<[\alpha X_{n}+\beta]$(其中$\alpha=\frac{a}{c}$且$\beta=\frac{b}{c}$)
考虑$\alpha$和$\beta$,由于$c(=k)\rightarrow \infty$,因此$a,b\in [0,c)$可以看作$\alpha$和$\beta$在$[0,1)$内均匀分布
记$D=\{(\alpha,\beta)\mid \alpha,\beta\in [0,1)$且$[\alpha X_{1}+\beta]<[\alpha X_{2}+\beta]<...<[\alpha X_{n}+\beta]\}$,不妨考虑将$D$中的点都染上黑色,此时问题即求黑色部分的面积
将$[0,1)$看成一个圆(顺时针方向为增大),并定义$f_{i}(\alpha)$为$[\alpha X_{i}]$到$[\alpha X_{i+1}]$在圆上顺时针方向的距离,那么不难得到$f_{i}(\alpha)=[(X_{i+1}-X_{i})\alpha]$(特别的,定义$X_{n+1}=X_{1}$)
对于$\alpha\in [0,1)$,$\exists \beta\in [0,1),(\alpha,\beta)\in D$的必要条件为$\sum_{i=1}^{n}f_{i}(\alpha)=1$(感性理解,即至多只能转一圈)
进一步的,若$\alpha$满足此条件,那么$(\alpha,\beta)\in D$当且仅当$[\alpha X_{1}+\beta]<[\alpha X_{n}+\beta]$(结合前者显然),进而不难得到$\alpha$所在列上黑色部分的长度即为$[(X_{1}-X_{n})\alpha]$
事实上,这里并没有考虑$[\alpha X_{i}+\beta]=[\alpha X_{i+1}+\beta]$的情况,但显然线段并不影响面积
枚举$\lfloor (X_{i+1}-X_{i})\alpha\rfloor$,即将$[0,1)$划分为$o(|X_{i+1}-X_{i}|)$段,每一段的$f_{i}(\alpha)$都是关于$\alpha$的一次函数,那么考虑$\sum_{i=1}^{n}f_{i}(\alpha)$即是一个$o(\sum_{i=1}^{n}|X_{i+1}-X_{i}|)$段的一次函数
对于其中一段,若其截距为1(不难发现斜率必然为0),那么即对$[(X_{1}-X_{n})\alpha]$求一个区间定积分,将其的端点也加入后同样变为一次函数,直接计算即可
时间复杂度为$o(S\log S)$(其中$S=\sum_{i=1}^{n}X_{i}$),可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 #define mod 998244353
5 #define inv2 499122177
6 #define inv3 332748118
7 #define ll long long
8 #define fi first
9 #define se second
10 int qpow(int n,int m){
11 int s=n,ans=1;
12 while (m){
13 if (m&1)ans=(ll)ans*s%mod;
14 s=(ll)s*s%mod;
15 m>>=1;
16 }
17 return ans;
18 }
19 struct Frac{
20 int a,b;
21 Frac(){
22 a=0,b=1;
23 }
24 Frac(int aa,int bb){
25 int g=__gcd(aa,bb);
26 a=aa/g,b=bb/g;
27 }
28 bool operator < (const Frac &k)const{
29 return (ll)a*k.b<(ll)b*k.a;
30 }
31 int get_val(){
32 return (ll)a*qpow(b,mod-2)%mod;
33 }
34 };
35 struct Line{
36 int k,b;
37 Line(){
38 k=b=0;
39 }
40 Line(int kk,int bb){
41 k=kk,b=bb;
42 }
43 int get_int(Frac x){
44 int s=x.get_val();
45 return (((ll)inv2*k%mod*s%mod*s+(ll)b*s)%mod+mod)%mod;
46 }
47 int get_int(Frac x,Frac y){
48 return (get_int(y)-get_int(x)+mod)%mod;
49 }
50 };
51 vector<pair<Frac,int> >v;
52 int n,s,ans,a[N];
53 int main(){
54 scanf("%d",&n);
55 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
56 a[n+1]=a[1];
57 for(int i=1;i<=n;i++){
58 if (a[i]==a[i+1])continue;
59 if (a[i]<a[i+1]){
60 for(int j=1;j<a[i+1]-a[i];j++)v.push_back(make_pair(Frac(j,a[i+1]-a[i]),-1));
61 }
62 else{
63 for(int j=0;j<a[i]-a[i+1];j++)v.push_back(make_pair(Frac(j,a[i]-a[i+1]),1));
64 }
65 }
66 v.push_back(make_pair(Frac(1,1),0));
67 sort(v.begin(),v.end());
68 for(int i=0,j=0;i<v.size();i++){
69 if ((i)&&(v[i-1].fi<v[i].fi)){
70 if (s==1){
71 if (a[1]>a[n])ans=(ans+Line(a[1]-a[n],-j).get_int(v[i-1].fi,v[i].fi))%mod;
72 else ans=(ans+Line(a[1]-a[n],j+1).get_int(v[i-1].fi,v[i].fi))%mod;
73 }
74 }
75 s+=v[i].se;
76 while (!(v[i].fi<Frac(j+1,abs(a[1]-a[n]))))j++;
77 }
78 ans=(ll)inv3*ans%mod;
79 printf("%d\n",ans);
80 return 0;
81 }
[atARC126F]Affine Sort的更多相关文章
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- ARC126F
[ARC126F] Affine Sort 给定一个长为 \(N\) 的序列 \(x\) ,定义 \(f(K)\) 表示满足下述条件的 \((a,b,c)\) 个数: \(1\le c\le K,0\ ...
- [算法]——归并排序(Merge Sort)
归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...
- [算法]——快速排序(Quick Sort)
顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...
- shell之sort命令
1 sort的工作原理 sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出. [rocrocket@rocrocket progr ...
- 详细解说 STL 排序(Sort)
0 前言: STL,为什么你必须掌握 对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算 ...
- SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join
nested loops join(嵌套循环) 驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...
- js sort() reverse()
数组中存在的两个方法:sort()和reverse() 直接用sort(),如下: ,,,,,,,,,,,]; console.log(array.sort());ps:[0, 1, 2, 2, 29 ...
- Java中的经典算法之冒泡排序(Bubble Sort)
Java中的经典算法之冒泡排序(Bubble Sort) 神话丿小王子的博客主页 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一 ...
随机推荐
- CentOS7安装Python3和VIM8
参考:http://blog.sina.com.cn/s/blog_45249ad30102yulz.html
- Visual Studio Docker调试端口设置
一.前言 在Visual Studio 调试程序时,Docker中的容器端口和主机端口映射随机生成,导致每次调试都需要修改前端API接口的地址 二.解决方案 1.修改Docker调试启动参数,找到启动 ...
- 随机生成文章的AI(C++)
#include <iostream> #include <cstdlib> #include <ctime> #include <fstream> u ...
- 使用Google Fonts注意事项
Google Fonts是一个字体嵌入服务库. 这包括免费和开源字体系列.用于浏览库的交互式 Web 目录以及用于通过 CSS 和 Android 使用字体的 API. Google 字体库中的流行字 ...
- Intellij IDEA 2021.2.3 最新版免费激活教程(可激活至 2099 年,亲测有效)
申明,本教程 Intellij IDEA 最新版破解.激活码均收集与网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除.如条件允许,建议大家购买正版. 本教程更新于:2021 年 10 月 ...
- 通过Envoy实现.NET架构的网关
什么是Gateway 在微服务体系结构中,如果每个微服务通常都会公开一组精细终结点,这种情况可能会有以下问题 如果没有 API 网关模式,客户端应用将与内部微服务相耦合. 在客户端应用中,单个页面/屏 ...
- Verdi UVM Debug Mode 简单使用
转载:Verdi UVM Debug Mode 简单使用_Holden_Liu的博客-CSDN博客 文档与源码: User Guide: UVMDebugUserGuide.pdf in $VERD ...
- 检查是否是BST 牛客网 程序员面试金典 C++ java Python
检查是否是BST 牛客网 程序员面试金典 C++ java Python 题目描述 请实现一个函数,检查一棵二叉树是否为二叉查找树. 给定树的根结点指针TreeNode* root,请返回一个boo ...
- copy-list-with-random-pointer leetcode C++
A linked list is given such that each node contains an additional random pointer which could point t ...
- Envoy实现.NET架构的网关(五)集成Redis实现限流
什么是限流 限流即限制并发量,限制某一段时间只有指定数量的请求进入后台服务器,遇到流量高峰期或者流量突增时,把流量速率限制在系统所能接受的合理范围之内,不至于让系统被高流量击垮.而Envoy可以通过e ...