记$g(k)$为$c$恰为$k$的合法三元组数,显然$f(k)=\sum_{i=1}^{k}g(i)$

结论:若$\lim_{k\rightarrow \infty}\frac{g(k)}{k^{2}}$存在,记其为$s$,则$\lim_{k\rightarrow \infty}\frac{f(k)}{k^{3}}=\frac{1}{3}s$

任取正实数$\epsilon$,根据极限的定义$\exists k_{0}\ge 1$,满足$\forall k\ge k_{0},s-\epsilon\le \frac{g(k)}{k^{2}}\le s+\epsilon$

对其求和并简单变形,不难得到$s-\epsilon\le \frac{\sum_{i=k_{0}}^{k}g(i)}{\sum_{i=k_{0}}^{k}i^2}\le s+\epsilon$

当$k\rightarrow\infty$时,显然中间的式子可以看作$\frac{f(k)}{\frac{1}{3}k^{3}}$,即得证

由此,不妨考虑如何求出$s$,进行如下构造:

定义$[x]$为$x$的小数部分,即$[x]=x-\lfloor x\rfloor$(这里$\lfloor x\rfloor$为小于等于$x$的最大整数)

注意到$x\ mod\ c<y\ mod\ c$当且仅当$[\frac{x}{c}]<[\frac{y}{c}]$,将其代入条件,也即$(aX_{i}+b)mod\ c$严格单调递增当且仅当$[\alpha X_{1}+\beta]<[\alpha X_{2}+\beta]<...<[\alpha X_{n}+\beta]$(其中$\alpha=\frac{a}{c}$且$\beta=\frac{b}{c}$)

考虑$\alpha$和$\beta$,由于$c(=k)\rightarrow \infty$,因此$a,b\in [0,c)$可以看作$\alpha$和$\beta$在$[0,1)$内均匀分布

记$D=\{(\alpha,\beta)\mid \alpha,\beta\in [0,1)$且$[\alpha X_{1}+\beta]<[\alpha X_{2}+\beta]<...<[\alpha X_{n}+\beta]\}$,不妨考虑将$D$中的点都染上黑色,此时问题即求黑色部分的面积

将$[0,1)$看成一个圆(顺时针方向为增大),并定义$f_{i}(\alpha)$为$[\alpha X_{i}]$到$[\alpha X_{i+1}]$在圆上顺时针方向的距离,那么不难得到$f_{i}(\alpha)=[(X_{i+1}-X_{i})\alpha]$(特别的,定义$X_{n+1}=X_{1}$)

对于$\alpha\in [0,1)$,$\exists \beta\in [0,1),(\alpha,\beta)\in D$的必要条件为$\sum_{i=1}^{n}f_{i}(\alpha)=1$(感性理解,即至多只能转一圈)

进一步的,若$\alpha$满足此条件,那么$(\alpha,\beta)\in D$当且仅当$[\alpha X_{1}+\beta]<[\alpha X_{n}+\beta]$(结合前者显然),进而不难得到$\alpha$所在列上黑色部分的长度即为$[(X_{1}-X_{n})\alpha]$

事实上,这里并没有考虑$[\alpha X_{i}+\beta]=[\alpha X_{i+1}+\beta]$的情况,但显然线段并不影响面积

枚举$\lfloor (X_{i+1}-X_{i})\alpha\rfloor$,即将$[0,1)$划分为$o(|X_{i+1}-X_{i}|)$段,每一段的$f_{i}(\alpha)$都是关于$\alpha$的一次函数,那么考虑$\sum_{i=1}^{n}f_{i}(\alpha)$即是一个$o(\sum_{i=1}^{n}|X_{i+1}-X_{i}|)$段的一次函数

对于其中一段,若其截距为1(不难发现斜率必然为0),那么即对$[(X_{1}-X_{n})\alpha]$求一个区间定积分,将其的端点也加入后同样变为一次函数,直接计算即可

时间复杂度为$o(S\log S)$(其中$S=\sum_{i=1}^{n}X_{i}$),可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 #define mod 998244353
5 #define inv2 499122177
6 #define inv3 332748118
7 #define ll long long
8 #define fi first
9 #define se second
10 int qpow(int n,int m){
11 int s=n,ans=1;
12 while (m){
13 if (m&1)ans=(ll)ans*s%mod;
14 s=(ll)s*s%mod;
15 m>>=1;
16 }
17 return ans;
18 }
19 struct Frac{
20 int a,b;
21 Frac(){
22 a=0,b=1;
23 }
24 Frac(int aa,int bb){
25 int g=__gcd(aa,bb);
26 a=aa/g,b=bb/g;
27 }
28 bool operator < (const Frac &k)const{
29 return (ll)a*k.b<(ll)b*k.a;
30 }
31 int get_val(){
32 return (ll)a*qpow(b,mod-2)%mod;
33 }
34 };
35 struct Line{
36 int k,b;
37 Line(){
38 k=b=0;
39 }
40 Line(int kk,int bb){
41 k=kk,b=bb;
42 }
43 int get_int(Frac x){
44 int s=x.get_val();
45 return (((ll)inv2*k%mod*s%mod*s+(ll)b*s)%mod+mod)%mod;
46 }
47 int get_int(Frac x,Frac y){
48 return (get_int(y)-get_int(x)+mod)%mod;
49 }
50 };
51 vector<pair<Frac,int> >v;
52 int n,s,ans,a[N];
53 int main(){
54 scanf("%d",&n);
55 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
56 a[n+1]=a[1];
57 for(int i=1;i<=n;i++){
58 if (a[i]==a[i+1])continue;
59 if (a[i]<a[i+1]){
60 for(int j=1;j<a[i+1]-a[i];j++)v.push_back(make_pair(Frac(j,a[i+1]-a[i]),-1));
61 }
62 else{
63 for(int j=0;j<a[i]-a[i+1];j++)v.push_back(make_pair(Frac(j,a[i]-a[i+1]),1));
64 }
65 }
66 v.push_back(make_pair(Frac(1,1),0));
67 sort(v.begin(),v.end());
68 for(int i=0,j=0;i<v.size();i++){
69 if ((i)&&(v[i-1].fi<v[i].fi)){
70 if (s==1){
71 if (a[1]>a[n])ans=(ans+Line(a[1]-a[n],-j).get_int(v[i-1].fi,v[i].fi))%mod;
72 else ans=(ans+Line(a[1]-a[n],j+1).get_int(v[i-1].fi,v[i].fi))%mod;
73 }
74 }
75 s+=v[i].se;
76 while (!(v[i].fi<Frac(j+1,abs(a[1]-a[n]))))j++;
77 }
78 ans=(ll)inv3*ans%mod;
79 printf("%d\n",ans);
80 return 0;
81 }

[atARC126F]Affine Sort的更多相关文章

  1. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  2. ARC126F

    [ARC126F] Affine Sort 给定一个长为 \(N\) 的序列 \(x\) ,定义 \(f(K)\) 表示满足下述条件的 \((a,b,c)\) 个数: \(1\le c\le K,0\ ...

  3. [算法]——归并排序(Merge Sort)

    归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...

  4. [算法]——快速排序(Quick Sort)

    顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...

  5. shell之sort命令

    1 sort的工作原理 sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出. [rocrocket@rocrocket progr ...

  6. 详细解说 STL 排序(Sort)

    0 前言: STL,为什么你必须掌握 对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算 ...

  7. SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join

    nested loops join(嵌套循环)   驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...

  8. js sort() reverse()

    数组中存在的两个方法:sort()和reverse() 直接用sort(),如下: ,,,,,,,,,,,]; console.log(array.sort());ps:[0, 1, 2, 2, 29 ...

  9. Java中的经典算法之冒泡排序(Bubble Sort)

    Java中的经典算法之冒泡排序(Bubble Sort) 神话丿小王子的博客主页 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一 ...

随机推荐

  1. python-docx 页面设置

    初识word文档-节-的概念 编辑一篇word文档,往往首先从页面设置开始,从下图可以看出,页面设置常操作的有页边距.纸张方向.纸张大小4个,而在word中是以节(section)来分大的块,每一节的 ...

  2. html行内元素

    定义 行内元素只占据它对应标签的边框所包含的空间,没有换行效果 div{ /* 定义行内元素*/ display:inline } 特点 多个元素可以横排显示 不支持宽高和上下margin 支持pad ...

  3. 缓冲区溢出利用与ShellCode编写

    一.实验目的 熟悉编写shellCode的流程 掌握缓冲区溢出的利用 二.实验环境 系统环境:Windows环境 软件环境:C++ ,缓冲区溢出文件链接 三.实验原理 要实施一次有效的缓冲区溢出攻击, ...

  4. ls命令剖析

    目录 ls命令剖析 资料翻译 SYNOPSIS 使用方式 DESCRIPTION 说明 参数的说明 -l 参数字符的解释 文件权限的解释 FILES 文件夹 实战演练 ls 命令 ls -l 命令 l ...

  5. 从网络通信的演进过程彻底搞懂Redis高性能通信的原理(全网最详细,建议收藏)

    我们一直说Redis的性能很快,那为什么快?Redis为了达到性能最大化,做了哪些方面的优化呢? 在深度解析Redis的数据结构 这篇文章中,其实从数据结构上分析了Redis性能高的一方面原因. 在目 ...

  6. javascript的变量及数据类型

    1.变量的概念 变量是储存数据的内存空间 2.变量的命名规则 js变量的命名规则如下:以字母或者下划线开头可以包含字母.数字.下划线,不能包含特殊字符 3.变量的创建及初始化方法 方法一:先创建后使用 ...

  7. SharkCTF2021 Classic_Crypto_king2

    crypto类题. 题面如下: 前面的代码给出了原理:后面的字符串第一行是print出的key,第二行是密文. 加密原理是,首先对table进行乱序处理,然后将明文flag按照(顺序table--&g ...

  8. bash反弹shell

    part1:不求甚解的本地复现 攻击端Debian 10.x:  192.168.208.134 受害端Ubuntu : 192.168.208.135 攻击端打开(监听)某端口:  键入命令:[nc ...

  9. 为Kubernetes集群添加用户认证

    Kubernetes中的用户 K8S中有两种用户(User)--服务账号(ServiceAccount)和普通意义上的用户(User) ServiceAccount是由K8S管理的,而User通常是在 ...

  10. BUAA_2020_软件工程_软件案例分析作业

    项目 内容 这个作业属于那个课程 班级博客 这个作业的要求在哪里 作业要求 我在这个课程的目标是 学习掌握软件工程的相关知识 这个作业在哪个具体方面帮我实现目标 通过对具体软件案例的分析学习软件工程 ...