P4494 [HAOI2018]反色游戏

题意

给你一个无向图,图上每个点是黑色或者白色。你可以将一条边的两个端点颜色取反。问你有多少种方法每个边至多取反一次使得图上全变成白色的点。

思路

若任意一个连通块黑色点的个数为奇数那么无解。

先考虑树的情况。发现如果是树,并且黑点个数为偶数,有且仅有一种方式达到目标。然后发现,对于一个无向图,它的任意一个生成树若有解,那么其他非树边无论是否取反都有且仅有一种情况达到目标,并且充分。所以答案就是 \(2^{m-n+1}\)。

考虑不联通的情况,每多一个连通块相当于少了一条非树边,所以答案就是 \(2^{m-n+cnt( 连通块个数 )}\)。

然后考虑对于删除每个点的情况,分为以下几种:

  1. 独立点,不与任何其他点联通,判断删去后是否有解;
  2. 非割点,判断删去后是否有解。具体来讲,该点为黑点时,当且仅当全局只有一个连通块且正是所属连通块无解时删除后有解。白点时类似。
  3. 是割点,判断删去该点后出现的所有连通块是否有解,并且也要判断是否仅有一个连通块无解且正是该点导致无解时删掉后有解。

对于每种情况,按照上面的方式计算一下有解时的新图的答案即可。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=1e5+10,mod=1e9+7;
int n,m,pow[maxn],in[maxn];
int ecnt,head[maxn],to[maxn<<1],nxt[maxn<<1];
inline void addedge(int a,int b){
to[++ecnt]=b,nxt[ecnt]=head[a],head[a]=ecnt,in[a]++ ;
to[++ecnt]=a,nxt[ecnt]=head[b],head[b]=ecnt,in[b]++;
}
int bel[maxn],dfn[maxn],low[maxn],cut[maxn],cnt[maxn],cntbel[maxn],cutcnt[maxn];
bool col[maxn],unsol[maxn],unsolbel[maxn];
void tarjan(int x,int fa){
bel[x]=bel[0],cutcnt[x]=cnt[x]=col[x];
dfn[x]=low[x]=++dfn[0];
for(int u,i=head[x];i;i=nxt[i]) if((u=to[i])!=fa)
if(!dfn[u]) {
tarjan(u,x),low[x]=min(low[x],low[u]);
cnt[x]+=cnt[u];
if(dfn[x]<=low[u]) cutcnt[x]+=cnt[u],++cut[x],unsol[x]|=cnt[u]&1;
}else low[x]=min(low[x],dfn[u]);
cut[x]-=!fa;
}
inline void work(){
memset(head,0,sizeof head),ecnt=bel[0]=0;memset(dfn,0,sizeof dfn),memset(cut,0,sizeof cut),memset(in,0,sizeof in),memset(unsol,0,sizeof unsol);
n=read(),m=read();
for(int i=1;i<=m;i++) addedge(read(),read());
for(int c,i=1;i<=n;i++) scanf("%1d",&c),col[i]=c;
int cntunsol=0;
for(int i=1;i<=n;i++) if(!dfn[i])
bel[0]++,tarjan(i,0),cntunsol+=cnt[i]&1,cntbel[bel[0]]=cnt[i],unsolbel[bel[0]]=cntbel[bel[0]]&1;
int ans=m-n+bel[0];
printf("%d ",cntunsol?0:pow[ans]);
for(int i=1;i<=n;i++) {
if(!in[i]) printf("%d ",cntunsol^cnt[i]?0:pow[ans]);
else if(!cut[i]){
if((unsolbel[bel[i]] and !(cntunsol^col[i])) or (!unsolbel[bel[i]] and !cntunsol and !col[i]))
printf("%d ",pow[ans-in[i]+1+cut[i]]);
else printf("0 ");
}else if(!unsol[i] and !((cntbel[bel[i]]-cutcnt[i])&1) and !(cntunsol-unsolbel[bel[i]]))
printf("%d ",pow[ans-in[i]+1+cut[i]]);
else printf("0 ");
}
puts("");
}
}
signed main(){
star::pow[0]=1;
for(int i=1;i<=100000;i++) star::pow[i]=(star::pow[i-1]<<1)%star::mod;
int T=read();
while(T--)star::work();
return 0;
}

P4494 [HAOI2018]反色游戏的更多相关文章

  1. 洛谷P4494 [HAOI2018]反色游戏(tarjan)

    题面 传送门 题解 我们先来考虑一个联通块,这些关系显然可以写成一个异或方程组的形式,形如\(\oplus_{e\in edge_u}x_e=col_u\) 如果这个联通块的黑色点个数为奇数,那么显然 ...

  2. 【BZOJ5303】[HAOI2018]反色游戏(Tarjan,线性基)

    [BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个 ...

  3. bzoj 5393 [HAOI2018] 反色游戏

    bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑 ...

  4. 【loj#2524】【bzoj5303】 [Haoi2018]反色游戏(圆方树)

    题目传送门:loj bzoj 题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方.我们观察一下方程,就可以发现自由元数量=边 ...

  5. [BZOJ5303] [HAOI2018] 反色游戏

    题目链接 LOJ:https://loj.ac/problem/2524 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5303 洛谷:https ...

  6. [BZOJ5303][HAOI2018]反色游戏(Tarjan)

    暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于 ...

  7. bzoj 5303: [Haoi2018]反色游戏

    Description Solution 对于一个有偶数个黑点的连通块,只需要任意两两配对,并把配对点上的任一条路径取反,就可以变成全白了 如果存在奇数个黑点的连通块显然无解,判掉就可以了 如果有解, ...

  8. Luogu4494 [HAOI2018]反色游戏 【割顶】

    首先发现对于一个联通块有奇数个黑点,那么总体来说答案无解.这个很容易想,因为对每个边进行操作会同时改变两个点的颜色,异或值不变. 然后一个朴素的想法是写出异或方程进行高斯消元. 可以发现高斯消元的过程 ...

  9. [HAOI2018]反色游戏

    [Luogu4494] [BZOJ5303] [LOJ2524] LOJ有数据就是好 原题解,主要是代码参考 对于每一个联通块(n个点),其他的边一开始随便选,只需要n-1条边就可以确定最终结果. 所 ...

随机推荐

  1. UI自动化在RobotFramework中采用的分层设计

    RF测试数据 RF测试数据由4种表数据组成.这些测试数据由表的第一个单元格标识,名称和用法如下: 表名 用法 别名 设置表 导入测试库,资源文件和变量文件.为测试套件和测试用例定义元数据 Settin ...

  2. 【NX二次开发】Block UI 字符串

    属性说明:     BlockID     String 控件ID     Enable     Logical 是否可操作     Group     Logical 是否分组     Label  ...

  3. 【NX二次开发】Block UI 面收集器

    属性说明 属性   类型   描述   常规           BlockID    String    控件ID    Enable    Logical    是否可操作    Group    ...

  4. Golang限制函数调用次数

    Golang限制函数调用次数 项目环境 ubuntu+go1.14 需求描述 限制某个函数5秒内只能调用一次,5秒内的其他调用抛弃 工具包使用 这里用到了官方限流器/time/rate 该限流器是基于 ...

  5. 为什么catch了异常,但事务还是回滚了?

    前几天我发了这篇文章<我来出个题:这个事务会不会回滚?>得到了很多不错的反馈,也有不少读者通过微信.群或者邮件的方式,给了我一些关于test4的回复.其中还有直接发给我测试案例,来证明我的 ...

  6. vim安装及个性化配置

    1.安装vim,并且vim命令的别名设置为vi yum install vim -y (如果不能识别vim命令,需要先安装vim) vi /etc/bashrc 或者 vi ~/.bashrc 在最后 ...

  7. Windows10上开启WSL2(Windows Subsystem for Linux 2)及Docker Desktop For Windows

    什么是WSL2 WSL2(Windows Subsystem for Linux 2)是适用于Linux的Windows子系统体系结构的一个新版本,它支持适用于Linux的Windows子系统在Win ...

  8. 使用Flex实现图片旋转。

    当用flex实现图片旋转的时候,遇到了这样的问题:截图之后,图片还是会继续旋转,应该是canvas这个还有旋转的角度,所以看到效果跟你截图保存下来的效果不一样. 函数: 角度转换为弧度,这里面涉及到了 ...

  9. 使用kubeadm进行k8s集群升级

    一.目标 操作系统:CentOS Linux release 7.6.1810 (Core) 安装软件: docker:18.06.3-ce 从v1.15.5升级到v1.16.15 当前版本: [ro ...

  10. CRM企业管理系统对于企业的价值

    对于企业来说,一个完整的工作流程可以概括为三个阶段:售前.售中.售后.每个阶段都需要不同的管理.此外,客户关系管理客户关系管理系统可以帮助企业在这三个阶段进行业务管理和客户管理,帮助企业更好地运作,增 ...