正题

题目链接:https://www.luogu.com.cn/problem/P5319


题目大意

一个长度为\(n\)的串\(T\),用\(0\sim 9\)填充所有的\(.\)。

然后给出\(m\)个串和它们的价值。

一个填充方案的价值等于:若\(T\)中出现了\(c\)个给出的串,那价值等于它们的价值乘积开\(c\)次根。

\(1\leq m\leq 1501,1\leq V_i\leq 10^9\)


解题思路

\[ans=\sqrt[c]{\prod V_i}
\]
\[\ln ans=\frac{1}{c}\sum (\ln V_i)
\]

然后就是一个\(0/1\)分数规划问题了,因为要匹配,所以要先跑一个\(AC\)自动机上\(dp\)就好了。

时间复杂度\(O(n^2\log 10^9)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int N=1510;
const double eps=1e-6;
int n,m,cnt,ch[N][10],fail[N],num[N];
double w[N],v[N],f[N][N];
pair<int,int>pre[N][N];queue<int> q;
char T[N],S[N];
void Insert(char *s,double val){
int l=strlen(s),x=0;
for(int i=0;i<l;i++){
int c=s[i]-'0';
if(!ch[x][c])ch[x][c]=++cnt;
x=ch[x][c];
}
v[x]+=val;num[x]++;
return;
}
void Build(){
for(int i=0;i<10;i++)
if(ch[0][i])q.push(ch[0][i]);
while(!q.empty()){
int x=q.front();q.pop();
v[x]+=v[fail[x]];num[x]+=num[fail[x]];
for(int i=0;i<10;i++){
if(!ch[x][i])ch[x][i]=ch[fail[x]][i];
else{
fail[ch[x][i]]=ch[fail[x]][i];
q.push(ch[x][i]);
}
}
}
return;
}
int check(double mid){
for(int i=0;i<=cnt;i++)w[i]=v[i]-mid*num[i];
for(int i=0;i<=n;i++)
for(int j=0;j<=cnt;j++)
f[i][j]=-1e100;
f[0][0]=0;
for(int i=1;i<=n;i++){
for(int j=0;j<=cnt;j++){
if(f[i-1][j]<=-1e99)continue;
if(T[i]=='.'){
for(int k=0;k<10;k++){
int y=ch[j][k];
if(f[i][y]<f[i-1][j]+w[y])
f[i][y]=f[i-1][j]+w[y],pre[i][y].first=j,pre[i][y].second=k;
}
}
else{
int k=T[i]-'0',y=ch[j][k];
if(f[i][y]<f[i-1][j]+w[y])
f[i][y]=f[i-1][j]+w[y],pre[i][y].first=j,pre[i][y].second=k;
}
}
}
int root=0;
for(int j=0;j<=cnt;j++)
if(f[n][j]>f[n][root])root=j;
return root;
}
void print(int k,int x){
if(k<1)return;
print(k-1,pre[k][x].first);
printf("%d",pre[k][x].second);
return;
}
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",T+1);
for(int i=1;i<=m;i++){
int x;scanf("%s",S);
scanf("%d",&x);
Insert(S,log(x));
}
Build();
double l=0,r=21;
while(r-l>eps){
double mid=(l+r)/2.0;
int root=check(mid);
if(f[n][root]>eps)l=mid;
else r=mid;
}
int root=check(l);
print(n,root);
return 0;
}

P5319-[BJOI2019]奥术神杖【0/1分数规划,AC自动机,dp】的更多相关文章

  1. [BJOI2019]奥术神杖(分数规划+AC自动机+DP)

    题解:很显然可以对权值取对数,然后把几何平均值转为算术平均值,然后很显然是分数规划.先对每个模式串建立AC自动机,每个节点w[i],sz[i]分别表示以其为前缀的字符串,然后再二分最优解k,然后w[i ...

  2. [Luogu5319][BJOI2019]奥术神杖(分数规划+AC自动机)

    对最终答案取对数,得到$\ln(Ans)=\frac{1}{c}\sum \ln(v_i)$,典型的分数规划问题.二分答案后,对所有咒语串建立AC自动机,然后套路地$f[i][j]$表示走到T的第i个 ...

  3. luogu P5319 [BJOI2019]奥术神杖

    传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所 ...

  4. 【题解】Luogu P5319 [BJOI2019]奥术神杖

    原题传送门 题目让我们最大化\(val=\sqrt[k]{\prod_{i=1}^k w_i}\),其中\(k\)是咒语的个数,\(w_i\)是第\(i\)个咒语的神力 看着根号和累乘不爽,我们两边同 ...

  5. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  6. [BJOI2019]奥术神杖(分数规划,动态规划,AC自动机)

    [BJOI2019]奥术神杖(分数规划,动态规划,AC自动机) 题面 洛谷 题解 首先乘法取\(log\)变加法,开\(c\)次根变成除\(c\). 于是问题等价于最大化\(\displaystyle ...

  7. [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案

    题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...

  8. luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP)

    luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP) Luogu 题解时间 难点在于式子转化,设有c个满足的子串,即求最大的 $ ans = \sqrt[c]{\prod_{ ...

  9. poj 2976 Dropping tests 0/1分数规划

    0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...

随机推荐

  1. 【小技巧】java的List分页

    今天,工作上,由于业务的一些特殊性,需要拿到数据后在java代码中进行分页. 写了一个工具类,记录如下: import java.util.ArrayList; import java.util.Li ...

  2. 去除所有js,html,css代码

    <?php$search = array ("'<script[^>]*?>.*?</script>'si", // 去掉 javascript ...

  3. 使用selenium模拟登录12306网站

    1 import yh 2 from selenium import webdriver 3 from PIL import Image 4 # from selenium.webdriver imp ...

  4. 爱思助手备份 iPhone 时没有设置密码,恢复备份时需要密码的问题

    i4.cn 备份时 iPhone 上登陆的 Apple ID 曾经设置过备份密码,这个密码就是恢复备份时需要输入的密码!

  5. Spring系列之不同数据库异常如何抽象的?

    前言 使用Spring-Jdbc的情况下,在有些场景中,我们需要根据数据库报的异常类型的不同,来编写我们的业务代码.比如说,我们有这样一段逻辑,如果我们新插入的记录,存在唯一约束冲突,就会返回给客户端 ...

  6. 查看所有日志命令:journalctl

    journalctl命令作用:实时查看所有日志(内核日志和应用日志) 语法格式: journalctl [参数] 常用参数:-k 查看内核日志-b 查看系统本次启动的日志-u 查看指定服务的日志-n ...

  7. tslib移植arm及使用

    测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 tslib 1.4 下载  https://gitlab. ...

  8. Pytest系列(15)- 多重校验插件之pytest-assume的详细使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 pytest中可以用pyth ...

  9. Spring中使用@within与@target的一些区别

    目录 背景 模拟项目例子 看看使用@within和@target的区别 @within @target @target 看起来跟合理一点 通知方法中注解参数的值为什么是不一样的 想用@within,但 ...

  10. Nginx:多项目开发配置跨域代理

    简述Nginx应用场景(前后端) 当我们开发 vue 项目中可以通过 proxyTable 进行跨域,但如果是原生的 html+css+js ,或者其他没有跨域插件的项目中,想要跨域就要引入配置许多的 ...